Low transition temperature mixtures (LTTMs) are versatile alternatives to ILs. They share many properties with ILs, so they become a suitable choice for entrainers in extractive distillation processes. In this study, glycolic acid and choline chloride in a 3:1 molar ratio (GC3:1) were synthesized and explored as entrainers for separation of acetonitrile + water azeotropic mixtures. Isobaric vapor−liquid equilibrium data for the pseudobinary mixtures of ACN + GC3:1 and water + GC3:1 were measured at atmospheric pressure (101.32 kPa). For the pseudoternary system ACN + water + GC3:1, also VLE data were measured at different GC3:1 mole fractions of 0.05, 0.1, and 0.15. The thermodynamic modeling of these systems was performed using the nonrandom two-liquid (NRTL) model. Furthermore, a study was conducted for synthesized GC3:1 recoverability. A good agreement were found between experimental data and predicted values for these systems. Results showed that LTTM (GC3:1) eliminated the acetonitrile + water azeotrope by manipulating the relative volatility of the acetonitrile + water mixture. Therefore, LTTM (GC3:1) can be concluded as an efficient entrainer for the separation of an acetonitrile + water azeotropic mixture by extractive distillation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.