The present paper is aimed at multi-objective scheduling in an agent based holonic manufacturing system to satisfy the goal of several communities namely the product, the resource, and the organization simultaneously. In this attempt, first a multi criteria based priority rule is developed following Simple Additive Weight (SAW) method under Multi Criteria Decision Making (MCDM) environment to rank the products. Accordingly, the products are allowed to select a particular resource for execution by negotiation considering minimum time as criterion. The interests of different communities are accomplished by allocating the ordered rank of products to the ordered rank of resources. Conflict, if arises between products and resources, are resolved by introducing the concept of Early Finish Time (EFT) as criterion for task allocation. A scheduling algorithm is proposed for execution of the rule. In view of machine failure, a cooperation strategy is evolved that also optimizes reallocation of the incomplete task. It is concluded that the proposed scheduling algorithm together with the disturbance handling algorithm are poised to satisfy the agent's local objective as well as organization's global objective concurrently and are commensurable with multi agent paradigm.
There is an ever increasing need of providing quick, yet improved solution to dynamic scheduling by better responsiveness following simple coordination mechanism to better adapt to the changing environments. In this endeavor, a cognitive agent based approach is proposed to deal with machine failure. A Multi Agent based Holonic Adaptive Scheduling (MAHoAS) architecture is developed to frame the schedule by explicit communication between the product holons and the resource holons in association with the integrated process planning and scheduling (IPPS) holon under normal situation. In the event of breakdown of a resource, the cooperation is sought by implicit communication. Inspired by the cognitive behavior of human being, a cognitive decision making scheme is proposed that reallocates the incomplete task to another resource in the most optimized manner and tries to expedite the processing in view of machine failure. A metamorphic algorithm is developed and implemented in Oracle 9i to identify the best candidate resource for task re-allocation. Integrated approach to process planning and scheduling realized under Multi Agent System (MAS) framework facilitates dynamic scheduling with improved performance under such situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.