Aggregation continues to be a critical quality attribute for a monoclonal antibody therapeutic product due to its perceived significant impact on immunogenicity. This paper aims to establish the versatility of circular dichorism (CD) spectroscopy toward understanding aggregation of monoclonal antibody (mAb) therapeutics. The first application involves the use of far-UV CD as a complementary analytical technique to size exclusion chromatography (SEC) for understanding protein aggregation. The second application uses thermal scanning CD as a high throughput screening tool for examining stability of a mAb therapeutic in various formulation and downstream buffers. For establishing far-UV CD as an orthogonal technique, a mAb was incubated in different downstream processing buffers and another mAb in formulation buffers, and they were analyzed by SEC and far-UV CD for aggregate content and conformational stability, respectively. To examine thermal scanning as a high throughput screening tool, ellipticity as a function of the temperature was measured at 218 nm from 20 to 90 °C. Far-UV CD was found to display high sensitivity toward early detection of conformational changes in mAb. CD measurements were also able to elucidate the different aggregation mechanisms. Furthermore, thermal stability scan allowed us to estimate T(onset) which has been found to correlate with aggregation induced by salt, low pH, and buffer species. T(onset) temperature from thermal scanning at 218 nm using CD was correlated successfully to aggregate content measured by SEC. Results from both the studies demonstrate the usefulness of CD for assessing stability of therapeutic proteins during process development, formulation development, and product characterization.
Aggregation of biotech products used therapeutically, such as antibodies, can contribute to potential immunogenicity of the product. Charge-based heterogeneities may also impact the safety and/or efficacy of a therapeutic. In this study, an approach based on empirical modeling and least squares regression is suggested for establishing hold times for process intermediates during production of monoclonal antibody (Mab) therapeutics. Two immunoglobulins were analyzed with respect to aggregation and charge heterogeneity in buffer conditions that are typically used during downstream processing of Mab products. Size exclusion chromatography, ion exchange chromatography (IEC), and circular dichroism were used. We found that aggregation primarily occurs at pH 3 (buffers used in affinity chromatography) and is higher in citrate buffer compared to acetate and glycine buffers. Aggregation is minimal in buffers used in anion exchange chromatography (Tris-HCl buffer at pH 7.2 and 8) and in cation exchange chromatography (citrate buffer at pH 6, acetate buffer at pH 6, and phosphate buffer at pH 6.5 and 7.5). The behavior is opposite in the case of charged heterogeneities (basic and acidic variants) as measured by IEC. The product is more susceptible to degradation at high pH than at low pH. The data presented here demonstrate that product stability can be a significant issue within the routinely used manufacturing conditions. We suggest that the approach presented needs to be adopted by all manufacturers to ensure product stability during processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.