This article explores a non-conventional method for improvement of performance of a wide-angle two-dimensional rectangular diffuser. Computational fluid dynamics investigation has been carried out to analyse the effect of injecting momentum through a moving surface to control the boundary layer separation close to the wall of a two-dimensional rectangular diffuser. A cylinder was placed at the diffuser inlet and rotated at various speeds. It is seen that injection of momentum through the moving surface delays flow separation, thereby increasing the pressure recovery coefficient. An increase in the rotational speed of the cylinder from 1500 to 5500 rad/s improves the pressure recovery coefficient marginally. Placing another cylinder at a preidentified location and rotating both cylinders at the same speed further improves the pressure recovery. Overall improvement in pressure recovery is 28 per cent from 0.63 to 0.81. Besides improvement of pressure recovery, the flow distribution in the core region also improves significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.