Aim:This in-vitro study measured the force deflection behavior of selected initial alignment archwires by conducting three-point bending tests under controlled tests. The study tested three wire designs, namely, co-axial multistranded stainless steel wires, nickel–titanium, and copper–nickel–titanium archwires.Materials and Methods:The archwires were ligated to a specially designed metal jig, simulating the arch. A testing machine (Instron) recorded activation and deactivation forces of different deflections at 37°C. Forces on activation and deactivation were compared by one-way analysis of variance (ANOVA).Results:Significant differences (P < 0.05) in activation and deactivation forces were observed among the tested wires. The co-axial multistranded wire had the lowest mean activation and deactivation forces, whereas conventional nickel–titanium wires had more mean activation and deactivation forces at different deflections.Conclusion:The activation and deactivation forces were higher for nickel–titanium followed by copper–nickel titanium and co-axial wires. The amount of percentage force loss was more for co-axial wire, indicating that these wires are not ideal for initial leveling and aligning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.