Ocean acidification and warming are co-occurring stressors, yet their effects on early life stages of large pelagic fishes are not well known. Here, we determined the effects of elevated CO 2 and temperature at levels projected for the end of the century on activity levels, boldness, and metabolic traits (i.e., oxygen uptake rates) in larval kingfish (Seriola lalandi), a large pelagic fish with a circumglobal distribution. We also examined correlations between these behavioral and physiological traits measured under different treatments. Kingfish were reared from the egg stage to 25 days post-hatch in a full factorial design of ambient and elevated CO 2 (~500 µatm and~1000 µatm) and temperature (21 • C and 25 • C). Activity levels were higher in fish from the elevated temperature treatment compared with fish reared under ambient temperature. However, elevated CO 2 did not affect activity, and boldness was not affected by either elevated CO 2 or temperature. Both elevated CO 2 and temperature resulted in increased resting oxygen uptake rates compared to fish reared under ambient conditions, but neither affected maximum oxygen uptake rates nor aerobic scope. Resting oxygen uptake rates and boldness were negatively correlated under ambient temperature, but positively correlated under elevated temperature. Maximum oxygen uptake rates and boldness were also negatively correlated under ambient temperature. These findings suggest that elevated temperature has a greater impact on behavioral and physiological traits of larval kingfish than elevated CO 2 . However, elevated CO 2 exposure did increase resting oxygen uptake rates and interact with temperature in complex ways. Our results provide novel behavioral and physiological data on the responses of the larval stage of a large pelagic fish to ocean acidification and warming conditions, demonstrate correlations between these traits, and suggest that these correlations could influence the direction and pace of adaptation to global climate change.
Many studies have examined the average effects of ocean acidification and warming on phenotypic traits of reef fishes, finding variable, but often negative effects on behavioural and physiological performance. Yet the presence and nature of a relationship between these traits is unknown. A negative relationship between phenotypic traits could limit individual performance and even the capacity of populations to adapt to climate change. Here, we examined the relationship between behavioural and physiological performance of a juvenile reef fish under elevated CO2 and temperature in a full factorial design. Behaviourally, the response to an alarm odour was negatively affected by elevated CO2, but not elevated temperature. Physiologically, aerobic scope was significantly diminished under elevated temperature, but not under elevated CO2. At the individual level, there was no relationship between behavioural and physiological traits in the control and single-stressor treatments. However, a statistically significant negative relationship was detected between the traits in the combined elevated CO2 and temperature treatment. Our results demonstrate that trade-offs in performance between behavioural and physiological traits may only be evident when multiple climate change stressors are considered, and suggest that this negative relationship could limit adaptive potential to climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.