Cell surface glycans, such as heparan sulfate (HS), are increasingly identified as co-regulators of growth factor signaling in early embryonic development; therefore, chemical tailoring of HS activity within the cellular glycocalyx of stem cells offers an opportunity to control their differentiation. The growth factors FGF2 and BMP4 are involved in mediating the exit of murine embryonic stem cells (mESCs) from their pluripotent state and their differentiation toward mesodermal cell types, respectively. Here, we report a method for remodeling the glycocalyx of mutant Ext1 mESCs with defective biosynthesis of HS to drive their mesodermal differentiation in an embryoid body culture. Lipid-functionalized synthetic HS-mimetic glycopolymers with affinity for both FGF2 and BMP4 were introduced into the plasma membrane of Ext1 mESCs, where they acted as functional co-receptors of these growth factors and facilitated signal transduction through associated MAPK and Smad signaling pathways. We demonstrate that these materials can be employed to remodel Ext1 mESCs within three-dimensional embryoid body structures, providing enhanced association of BMP4 at the cell surface and driving mesodermal differentiation. As a more complete understanding of the function of HS in regulating development continues to emerge, this simple glycocalyx engineering method is poised to enable precise control over growth factor signaling activity and outcomes of differentiation in stem cells.
Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of biological functions. In particular, the T cell immunoglobulin and mucin-domain containing family of proteins (TIM-1, -3, -4) decorate immune cells and act as key checkpoint inhibitors in cancer. However, their dense O-glycosylation remains enigmatic both in terms of glycoproteomic landscape and structural dynamics, primarily due to the challenges associated with studying mucin domains. Here, we present a mucinase (SmE) and demonstrate its ability to selectively cleave along the mucin glycoprotein backbone, similar to others of its kind. Unlike other mucinases, though, SmE harbors the unique ability to cleave at residues bearing extremely complex glycans which enabled improved mass spectrometric analysis of several mucins, including the entire TIM family. With this information in-hand, we performed molecular dynamics (MD) simulations of TIM-3 and -4 to demonstrate how glycosylation affects structural features of these proteins. Overall, we present a powerful workflow to better understand the detailed molecular structures of the mucinome.
Achieving molecular control over the formation of synaptic contacts in the nervous system can provide important insights into their regulation and can offer means for creating well-defined in vitro systems to evaluate modes of therapeutic intervention. Agrin-induced clustering of acetylcholine receptors (AChRs) at postsynaptic sites is a hallmark of the formation of the neuromuscular junction, a synapse between motoneurons and muscle cells. In addition to the cognate agrin receptor LRP4 (low-density lipoprotein receptor related protein-4), muscle cell heparan sulfate (HS) glycosaminoglycans (GAGs) have also been proposed to contribute to AChR clustering by acting as agrin co-receptors. Here, we provide direct evidence for the role of HS GAGs in agrin recruitment to the surface of myotubes, as well as their functional contributions toward AChR clustering. We also demonstrate that engineering of the myotube glycocalyx using synthetic HS GAG polymers can replace native HS structures to gain control over agrin-mediated AChR clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.