We use molecular dynamics to calculate the rotational and vibrational energy relaxation of C2H6 in Ar, Kr, and Xe bath gases over a pressure range of 10–400 atm and at temperatures of 300 and 800 K. The C2H6 is instantaneously excited by 80 kcal/mol randomly distributed into both vibrational and rotational modes. The computed relaxation rates show little sensitivity to the identity of the noble gas in the bath. Vibrational relaxation rates show a nonlinear pressure dependence at 300 K. At 800 K the reduced range of bath gas densities covered by the range of pressures does not yet show any nonlinearity in the pressure dependence. Rotational relaxation is characterized with two relaxation rates. The slower rate is comparable to the vibrational relaxation rate. The faster rate has a linear pressure dependence at 300 K but an irregular, nonlinear pressure dependence at 800 K. To understand this, a model was developed based on approximating the periodic box used in the molecular dynamics simulations by an equal-volume collection of cubes where each cube is sized to allow only single occupancy by the noble gas or the molecule. Combinatorial statistics then leads to a pressure- and temperature-dependent analytic distribution of the bath gas species the molecule encounters in a collision. This distribution, the dissociation energy of molecule/bath gas complexes and bath gas clusters, and the computed energy release per collision combine to show that only at 300 K is the energy release sufficient to dissociate likely complexes and clusters. This suggests that persistent and pressure-dependent clusters and complexes at 800 K may be responsible for the nonlinear pressure dependence of rotational relaxation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.