Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles-hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta-exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO)-the strongest on record-combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -.94) and the Multivariate ENSO Index (MEI) for all years (r = .74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the importance of region-wide collaborations.
Although sea turtles have received substantial focus worldwide, research on the immature life stages is still relatively limited. The latter is of particular importance, given that a large proportion of sea turtle populations comprises immature individuals. We set out to identify knowledge gaps and identify the main barriers hindering research in this field. We analyzed the perceptions of sea turtle experts through an online survey which gathered their opinions on the current state of affairs on immature sea turtle research, including species and regions in need of further study, priority research questions, and barriers that have interfered with the advancement of research. Our gap analysis indicates that studies on immature leatherback Dermochelys coriacea and hawksbill Eretmochelys imbricata turtles are lacking, as are studies on all species based in the Indian, South Pacific, and South Atlantic Oceans. Experts also perceived that studies in population ecology, namely on survivorship and demography, and habitat use/behavior, are needed to advance the state of knowledge on immature sea turtles. Our survey findings indicate the need for more interdisciplinary research, collaborative efforts (e.g. data-sharing, joint field activities), and improved communication among researchers, funding bodies, stakeholders, and decision-makers.
Satellite telemetry is a valuable tool for examining long-term, large scale movements of highly migratory species. Tracking data can be used by resource managers to protect habitat and ensure recovery of threatened and endangered species. Few tracking studies have focused on habitat use patterns of juvenile, neritic stage turtles. Satellite tracking surveys were conducted to assess juvenile green turtle movements in the northwestern Gulf of Mexico during 2006-2010. Fifteen turtles were equipped with platform terminal transmitters (PTT; 3 rehabilitated, 12 wild). Mean track duration was 129 days (range: 16-344 days). A hierarchical switching state-space model (hSSM) was applied to extrapolate population level foraging/resident versus migratory movements. All turtles displayed residency in Texas bays during summer months (March-November) while five individuals exhibited seasonal migrations into Mexican waters following passage of strong cold fronts in December and January. Winter (e.g., Mexico) versus summer (e.g., Texas) core areas were not significantly different. Winter 95% contours were significantly larger than summer (summer: 125.4 ± 47.5 km 2 , n = 15; winter: 274.4 ± 252.9 km 2 , n = 5). Space-time hot spot analysis provided a new and unique approach for conducting spatiotemporal cluster analysis, and was applied to migratory turtles to determine monthly changes in distribution and habitat associations. Changes in hot spots over time were detected within the lower regions of the Laguna Madre with punctuated intervals of hot spot activity. Upper regions of the Laguna Madre were identified as new hot spots in the later part of the year (e.g., Fall/Winter). Within core areas in Texas, seagrasses comprised an average density of 32.4% while 87.5% of the total available seagrass habitat occurred within the 95% KDE contour. Based on PTT and historic tide station surface water temperatures, all turtles tracked over winter migrations and residencies (n = 5) remained within waters > 15 • C, suggesting a threshold temperature at which migration behavior may be initiated. Continued recovery of threatened and endangered sea turtle populations depends on a comprehensive examination of patterns in habitat use. These data suggest cooperation between the United States and Mexico is needed to protect critical habitat and enhance recovery of this species.
Nine green sea turtles, Chelonia mydas, were presented to two rehabilitation facilities on the Texas coast with cutaneous growths consistent with fibropapillomatosis. Complete blood counts, radiographs, and computed tomography were performed for further evaluation. No evidence of internal tumors was present using either imaging modality. Treatment included surgical excision of the cutaneous tumors. Histopathologic analysis and polymerase chain reaction (PCR) were performed with the tissue samples collected. Histopathology revealed characteristic inclusions in only three (33%) individuals, and PCR results for fibropapilloma-associated turtle herpesvirus were positive for eight (89%) of nine individuals submitted. To our knowledge, this is the first report of fibropapillomatosis in a green sea turtle on the Texas coast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.