Two experiments evaluated the effects of corn residue harvest method on animal performance and diet digestibility. Experiment 1 was designed as a 2 × 2 + 1 factorial arrangement of treatments using 60 individually fed crossbred steers (280 kg [SD 32] initial BW; = 12). Factors were the corn residue harvest method (high-stem and conventional) and supplemental RUP at 2 concentrations (0 and 3.3% diet DM). A third harvest method (low-stem) was also evaluated, but only in diets containing supplemental RUP at 3.3% diet DM because of limitations in the amount of available low-stem residue. Therefore, the 3 harvest methods were compared only in diets containing supplemental RUP. In Exp. 2, 9 crossbred wethers were blocked by BW (42.4 kg [SD 7] initial BW) and randomly assigned to diets containing corn residue harvested 1 of 3 ways (low-stem, high-stem, and conventional). In Exp. 1, steers fed the low-stem residue diet had greater ADG compared with the steers fed conventionally harvested corn residue ( = 0.03; 0.78 vs. 0.63 kg), whereas steers fed high-stem residue were intermediate ( > 0.17; 0.69 kg), not differing from either conventional or low-stem residues. Results from in vitro OM digestibility suggest that low-stem residue had the greatest ( < 0.01) amount of digestible OM compared with the other 2 residue harvest methods, which did not differ ( = 0.32; 55.0, 47.8, and 47.1% for low-stem, high-stem, and conventional residues, respectively). There were no differences in RUP content (40% of CP) and RUP digestibility (60%) among the 3 residues ( ≥ 0.35). No interactions were observed between harvest method and the addition of RUP ( ≥ 0.12). The addition of RUP tended to result in improved ADG (0.66 ± 0.07 vs. 0.58 ± 0.07 for supplemental RUP and no RUP, respectively; = 0.08) and G:F (0.116 ± 0.006 vs. 0.095 ± 0.020 for supplemental RUP and no RUP, respectively; = 0.02) compared with similar diets without the additional RUP. In Exp. 2, low-stem residue had greater DM and OM digestibility and DE ( < 0.01) than high-stem and conventional residues, which did not differ ( ≥ 0.63). Low-stem residue also had the greatest NDF digestibility (NDFD; < 0.01), whereas high-stem residue had greater NDFD than conventional residue ( < 0.01). Digestible energy was greatest for low-stem residue ( < 0.05) and did not differ between high-stem and conventional residues ( = 0.50). Reducing the proportion of stem in the bale through changes in the harvest method increased the nutritive quality of corn residue.
To determine the effect of harvest method and ammoniation on both in vivo and in vitro digestibility of corn residue, six corn residue treatments consisting of three different harvest methods either with or without anhydrous ammonia chemical treatment (5.5% of dry matter [DM]) were evaluated. The harvest methods included conventional rake-and-bale (CONV) and New Holland Cornrower with eight rows (8ROW) or two rows (2ROW) of corn stalks chopped into the windrow containing the tailings (leaf, husk, and upper stem) from eight rows of harvested corn (ammoniated bales of each harvest method resulted in treatments COVAM, 8RAM, and 2RAM). Nine crossbred wether lambs (49.2 ± 0.5 kg BW) were fed 64.2% corn residue, 29.8% wet corn gluten feed, 3.3% smooth-bromegrass hay, and 2.8% mineral mix (DM basis) in a 9 × 6 Latin rectangle metabolism study with a 3 × 2 factorial treatment to measure total tract disappearance. Six 21-d periods consisted of 14-d adaptation and 7-d total fecal collection, and lambs were fed ad libitum (110% of the previous day’s DM intake [DMI]) during days 1 to 12 and reduced to 95% of ad libitum intake for days 13 to 21. There was a harvest method by ammoniation interaction (P < 0.01) for ad libitum DMI (days 7 to 11). Ammoniation increased (P < 0.01) intake across all harvest methods, where 2RAM DMI was 4.1%, COVAM was 3.6%, and 8RAM was 3.1%, which were all different (P < 0.01) from each other, but all untreated residues were consumed at 2.6% of BW (P ≥ 0.92) regardless of harvest method. There were no interactions (P > 0.34) between harvest method and ammoniation for any total tract or in vitro digestibility estimate. Harvest method affected (P < 0.04) DM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) digestibility, where 2ROW was greater than both CONV and 8ROW, which did not differ. The organic matter (OM) digestibility (P = 0.12) and digestible energy (DE; P = 0.30) followed the same numerical trend. Both in vitro DM digestibility (IVDMD) and in vitro OM digestibility (IVOMD) of the residue were affected (P < 0.01) by harvest method, with 2ROW being greater (P < 0.01) than both CONV and 8ROW. For IVDMD, 8ROW was not (P = 0.77) different from CONV, but 8ROW IVOMD was lower (P = 0.03) than CONV. Ammoniation improved (P < 0.01) DM, OM, NDF, and ADF digestibility of all harvest methods, resulting in a 26% increase (P < 0.01) in DE due to ammoniation. Similar digestibility improvements were observed in vitro with ammoniation improving IVDMD and IVOMD by 23% and 20%, respectively. Both selective harvest methods and ammoniation can improve the feeding value of baled corn residue.
Cow herd profitability can be greatly influenced by reproductive success, average age of herd, and genetic potential within the environment. Productivity is influenced by cow age with calf weaning weight, increasing from 2 to 5 yr of age in dams. With that in mind, increasing average age of the cowherd has the potential to increase cow/calf profitability. Culling cows before 5 yr of age negatively impacts production efficiency due to decreased calf weaning weight in younger cows and subsequently, increase replacement rate and costs. Therefore, reproduction in young cattle is important to overall economic efficiency within the cow herd and a driving factor in longevity. Due to decreased reproduction and offspring performance, young females have previously been considered an economic liability. The effect of increased average cow age within the herd along with increased pregnancy rate of young cows has shown to increase production efficiency by decreasing replacement rates and adding greater production potential with increased calf weaning weights. In young beef cows, partitioning nutrients away from lactational demands allows for nutrients to be utilized for cow growth and reproduction. An increase in selection for milk production has resulted in beef cows undergoing greater nutritional stress during early lactation, which ultimately reduces cowherd reproduction and efficiency. Although a big emphasis is placed on output traits, economic value of reproduction is 5 times greater than growth or maternal output traits in beef cattle. In addition, the value of the added milk production may not fully be captured, due to extensive environments with limited nutrients. Even in environments with greater feed resources, selection for milk production may led to a decrease in reproduction, production efficiency, and cowherd retention rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.