The adaptive immune response is initiated by the interaction of T cell antigen receptors with major histocompatibility complex molecule-peptide complexes in the nanometer scale gap between a T cell and an antigen-presenting cell, referred to as an immunological synapse. In this review we focus on the concept of immunological synapse formation as it relates to membrane structure, T cell polarity, signaling pathways, and the antigen-presenting cell. Membrane domains provide an organizational principle for compartmentalization within the immunological synapse. T cell polarization by chemokines increases T cell sensitivity to antigen. The current model is that signaling and formation of the immunological synapse are tightly interwoven in mature T cells. We also extend this model to natural killer cell activation, where the inhibitory NK synapse provides a striking example in which inhibition of signaling leaves the synapse in its nascent, inverted state. The APC may also play an active role in immunological synapse formation, particularly for activation of naïve T cells.
The immunological synapse is a specialized cell-cell junction between T cell and antigen-presenting cell surfaces. It is characterized by a central cluster of antigen receptors, a ring of integrin family adhesion molecules, and temporal stability over hours. The role of this specific organization in signaling for T cell activation has been controversial. We use in vitro and in silico experiments to determine that the immunological synapse acts as a type of adaptive controller that both boosts T cell receptor triggering and attenuates strong signals.
The immunological synapse (IS) is a junction between the T cell and antigen-presenting cell and is composed of supramolecular activation clusters (SMACs). No studies have been published on naive T cell IS dynamics. Here, we find that IS formation during antigen recognition comprises cycles of stable IS formation and autonomous naive T cell migration. The migration phase is driven by PKCtheta, which is localized to the F-actin-dependent peripheral (p)SMAC. PKCtheta(-/-) T cells formed hyperstable IS in vitro and in vivo and, like WT cells, displayed fast oscillations in the distal SMAC, but they showed reduced slow oscillations in pSMAC integrity. IS reformation is driven by the Wiscott Aldrich Syndrome protein (WASp). WASp(-/-) T cells displayed normal IS formation but were unable to reform IS after migration unless PKCtheta was inhibited. Thus, opposing effects of PKCtheta and WASp control IS stability through pSMAC symmetry breaking and reformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.