Simulated Kalman Filter (SKF) is a population-based optimization algorithm which exploits the estimation capability of Kalman filter to search for a solution in a continuous search space. The SKF algorithm only capable to solve numerical optimization problems which involve continuous search space. Some problems, such as routing and scheduling, involve binary or discrete search space. At present, there are three modifications to the original SKF algorithm in solving combinatorial optimization problems. Those modified algorithms are binary SKF (BSKF), angle modulated SKF (AMSKF), and distance evaluated SKF (DESKF). These three combinatorial SKF algorithms use binary encoding to represent the solution to a combinatorial optimization problem. This paper introduces the latest version of distance evaluated SKF which uses state encoding, instead of binary encoding, to represent the solution to a combinatorial problem. The algorithm proposed in this paper is called state-encoded distance evaluated SKF (SEDESKF) algorithm. Since the original SKF algorithm tends to converge prematurely, the distance is handled differently in this study. To control and exploration and exploitation of the SEDESKF algorithm, the distance is normalized. The performance of the SEDESKF algorithm is compared against the existing combinatorial SKF algorithm based on a set of Traveling Salesman Problem (TSP).
Emotion Recognition System (ERS) identifies human emotion like happiness, sadness, anger, disgust and fear. These emotions can be detected via various modalities such as facial expression analysis, voice intonation, and physiological signals like the brain’s electroencephalogram (EEG) and heart’s electrocardiogram (ECG). The emotion recognition system allows machines to recognized human emotions and reacts to it. It offers broad areas of application, from smart home automation to entertainment recommendation system to driving assistance and to automated security system. It is a promising and interesting field to be explored especially as we are moving towards industrial revolution 5.0. Therefore, a survey was conducted on the awareness and readiness of the usage of emotion recognition system among Malaysian youths, specifically among university students. The findings are presented here. Overall, positive orientation towards the technology is observed among the participants and they are ready for its adoption
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.