Tissue-resident macrophages are a diverse population of cells that perform specialized functions including sustaining tissue homeostasis and tissue surveillance. Here, we report an interstitial subset of CD169+ lung-resident macrophages that are transcriptionally and developmentally distinct from alveolar macrophages (AMs). They are primarily localized around the airways and are found in close proximity to the sympathetic nerves in the bronchovascular bundle. These nerve- and airway-associated macrophages (NAMs) are tissue resident, yolk sac derived, self-renewing, and do not require CCR2+ monocytes for development or maintenance. Unlike AMs, the development of NAMs requires CSF1 but not GM-CSF. Bulk population and single-cell transcriptome analysis indicated that NAMs are distinct from other lung-resident macrophage subsets and highly express immunoregulatory genes under steady-state and inflammatory conditions. NAMs proliferated robustly after influenza infection and activation with the TLR3 ligand poly(I:C), and in their absence, the inflammatory response was augmented, resulting in excessive production of inflammatory cytokines and innate immune cell infiltration. Overall, our study provides insights into a distinct subset of airway-associated pulmonary macrophages that function to maintain immune and tissue homeostasis.
The spleen is an important site for generating protective immune responses against pathogens. After infection, immune cells undergo rapid reorganization to initiate and maintain localized inflammatory responses; however, the mechanisms governing this spatial and temporal cellular reorganization remain unclear. We show that the strategic position of splenic marginal zone CD169+ macrophages is vital for rapid initiation of antibacterial responses. In addition to controlling initial bacterial growth, CD169+ macrophages orchestrate a second phase of innate protection by mediating the transport of bacteria to splenic T cell zones. This compartmentalization of bacteria within the spleen was essential for driving the reorganization of innate immune cells into hierarchical clusters and for local interferon-γ production near sites of bacterial replication foci. Our results show that both phases of the antimicrobial innate immune response were dependent on CD169+ macrophages, and, in their absence, the series of events needed for pathogen clearance and subsequent survival of the host was disrupted. Our study provides insight into how lymphoid organ structure and function are related at a fundamental level.
Since the discovery that conjugation of ubiquitin to proteins can drive proteolytic degradation, ubiquitination has been shown to perform a diverse range of functions in the cell. It plays an important role in endocytosis, signal transduction, trafficking of vesicles inside the cell, and even DNA repair. The process of ubiquitination-mediated control has turned out to be remarkably complex, involving a diverse array of proteins and many levels of control. This review focuses on a family of structurally related E3 ligases termed the membrane-associated RING-CH (MARCH) ubiquitin ligases, which were originally discovered as structural homologs to the virals E3s, K3, and K5 from Kaposi's sarcoma-associated herpesvirus (KSHV). These proteins contain a catalytic RING-CH finger and are typically membrane-bound, with some having up to 14 putative transmembrane domains. Despite several lines of evidence showing that the MARCH proteins play a complex and essential role in several cellular processes, this family remains understudied.
Viral clearance requires effector T-cell egress from the draining lymph node (dLN). The mechanisms that regulate the complex process of effector T-cell egress from the dLN after infection are poorly understood. Here, we visualized endogenous pathogen-specific effector T-cell migration within, and from, the dLN. We used an inducible mouse model with a temporally disrupted sphingosine-1-phosphate receptor-1 (S1PR1) gene specifically in endogenous effector T cells. Early after infection, WT and S1PR1 −/− effector T cells localized exclusively within the paracortex. This localization in the paracortex by CD8 T cells was followed by intranodal migration by both WT and S1PR1−/− T cells to positions adjacent to both cortical and medullary lymphatic sinuses where the T cells exhibited intense probing behavior. However, in contrast to WT, S1PR1 −/− effector T cells failed to enter the sinuses.We demonstrate that, even when LN retention signals such as CC chemokine receptor 7 (CCR7) are down-regulated, T cell intrinsic S1PR1 is the master regulator of effector T-cell emigration from the dLN.n effective immune response depends on the large-scale, but carefully regulated, migration of T cells within and between lymphoid and peripheral tissues. This migration is tightly regulated by several factors, including the highly organized secondary lymphoid structure and the cellular expression of chemokine receptors and compartmentalized secretion of their cognate ligands (1). This balance between the anatomy and the ordered expression of cell surface and soluble proteins dictates the exquisite choreography of T-cell migration, and visualizing these dynamics of T-cell behavior in situ within the lymph nodes (LNs) is essential for understanding the mechanisms that mediate the generation of a productive antimicrobial or antitumoral immune response (1, 2). However, our understanding of the factors that regulate the anatomical program followed by endogenous antigen-specific effector T cells after an infection remains incomplete, especially with respect to the mechanisms that regulate egress kinetics of effector T cells from LN (2, 3).T-cell migration, even at steady state, is a highly regulated process (4). T-cell entry into the LN is controlled by G protein-coupled receptors (GPCRs) (3) such as CC chemokine receptor 7 (CCR7), which is also critical for the localization and retention of T cells within the LN paracortex (5, 6). Egress of naive T cells from the LN via the lymphatic vessels is regulated by the GPCR sphingosine-1-phosphate receptor-1 (S1PR1) (3) and adhesion molecules (4). S1PR1 is among four other GPCRs that bind to sphingosine-1-phosphate (S1P) with high affinity. S1PR1 is abundantly expressed in different cell types and tissues, including immune cells and endothelial cells (7). In addition to mediating lymphocyte egress, binding of S1P to S1PR1 and other receptors (S1PR2 to -5) on the cell surface initiates several signaling cascades that affect the functioning of many organ systems and control a multitude of biological ...
Memory CD8+ T cells were originally thought to exist as two populations (effector and central memory). In recent years, a third population called resident memory T cells has been discovered and further to this these populations are being divided into different subtypes. Understanding the function and developmental pathways of memory CD8+ T cells is key to developing effective therapies against cancer and infectious diseases. Here we have reviewed what is currently known about all three subsets of memory CD8+ T populations and as to how each population was originally discovered and the developmental pathways of each subpopulation. Each memory population appears to play a distinct role in adaptive immune responses but we are still a long way from understanding how the populations are generated and what roles they play in protection against invading pathogens and if they contribute to the pathogenesis of inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.