Abstract-Optical losses at the front surface of a silicon solar cell have a significant impact on efficiency, and as such, efforts to reduce reflection are necessary. In this work, a method to fabricate and passivate nanowire-pyramid hybrid structures formed on a silicon surface via wet chemical processing is presented. These high surface area structures can be utilised on the front surface of back contact silicon solar cells to maximise light absorption therein. Hemispherical reflectivity under varying incident angles is measured to study the optical enhancement conferred by these structures. The significant reduction in reflectivity (<2%) under low incident angles is maintained at high angles by the hybrid textured surface compared to surfaces textured with nanowires or pyramids alone. Finite Difference Time Domain simulations of these dual micro-nanoscale surfaces under varying angles supports the experimental results. In order to translate the optical benefit of these high surface area structures into improvements in device efficiency, they must also be well passivated. To this end, atomic layer deposition of alumina is used to reduce surface recombination velocities of these ultra-black silicon surfaces to below 30 cm/s. A decomposition of the passivation components is performed using capacitance-voltage and Kelvin Probe measurements. Finally, device simulations show power conversion efficiencies exceeding 21% are possible when using these ultra-black Si surfaces for the front surface of back contact silicon solar cells.
In this work, we develop a fabrication process for an interdigitated back contact solar cell using BBr 3 diffusion to form the p + region and POCl 3 diffusion to form the n + regions. We use the industry standard technology computer-aided design modelling package, Synopsys Sentaurus, to optimize the geometry of the device using doping profiles derived from electrochemical capacitance voltage measurements. Cells are fabricated using n-type float-zone silicon substrates with an emitter fraction of 60%, with localized back surface field and contact holes. Key factors affecting cell performance are identified including the impact of e-beam evaporation, dry etch damage, and bulk defects in the float zone silicon substrate. It is shown that a preoxidation treatment of the wafer can lead to a 2 ms improvement in bulk minority carrier lifetime at the cell level, resulting in a 4% absolute efficiency boost. exceptionally high lifetimes can be achieved owing to the high purity of the material. 5 However, recent work by Grant et al has demonstrated that FZ silicon contains defects, which are incorporated during crystal growth. 6,7 In as-grown samples, the defects are essentially latent, but they become activated as recombination centres upon heat-treating FZ silicon at temperatures between 450°C and 750°C.Thus, although the as-received lifetime is very high, the lifetime can ---------------------------------------------------------------------------------------------This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
We use a metal assisted chemical etch process to fabricate silicon nanowire arrays (SiNWAs) onto a dense periodic array of pyramids that are formed using an alkaline etch masked with an oxide layer. The hybrid micro-nano structure acts as an anti-reflective coating with experimental reflectivity below 1% over the visible and near-infrared spectral regions. This represents an improvement of up to 11 and 14 times compared to the pyramid array and SiNWAs on bulk, respectively. In addition to the experimental work, we optically simulate the hybrid structure using a commercial finite difference time domain package. The results of the optical simulations support our experimental work, illustrating a reduced reflectivity in the hybrid structure. The nanowire array increases the absorbed carrier density within the pyramid by providing a guided transition of the refractive index along the light path from air into the silicon. Furthermore, electrical simulations which take into account surface and Auger recombination show an efficiency increase for the hybrid structure of 56% over bulk, 11% over pyramid array and 8.5% over SiNWAs.
Texturing the surface with both micro and nano scale features to form black silicon is a promising approach in improving solar cell efficiency. In optical modeling of such a surface, it is difficult to balance the accuracy and computational resource. In this work, we develop on a semianalytical model, effective index technique (EIT), which utilizes a finite-difference time domain (FDTD) method to represent the nanoscale texturing as an effective medium, and then apply this to microscale structures, which can then be modeled using the transfer matrix method and ray-tracing. We fabricate and model both periodic and random nanoscale textures, and analyze the accuracy of several effective index models against measured reflectivity. The limitations in the model are identified and coherency of the films is studied. The semianalytical method is shown to perform better than the other effective medium approaches for modeling black silicon and is applicable to modeling multiscale textures, whereas full numerical methods such as FDTD are not. However, although the EIT approach predicts the trends in antireflective performance of a texture, it remains inaccurate when compared with the experiment. Also, as with all effective medium approaches, the EIT does not account for light trapping through scattering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.