Morphine and its congener opioids are the main therapy for severe pain in cancer. However, chronic morphine treatment stimulates angiogenesis and tumour growth in mice. We examined if celecoxib (a cyclooxygenase-2 (COX-2) inhibitor) prevents morphineinduced tumour growth without compromising analgesia. The effect of chronic treatment with celecoxib (by gavage) and/or morphine (subcutaneously), or PBS on tumour prostaglandin E 2 (PGE 2 ), COX-2, angiogenesis, tumour growth, metastasis, pain behaviour and survival was determined in a highly invasive SCK breast cancer model in A/J mice. Two weeks of chronic morphine treatment at clinically relevant doses stimulates COX-2 and PGE 2 (4.5-fold compared to vehicle alone) and angiogenesis in breast tumours in mice. This is accompanied by increased tumour weight (B35%) and increased metastasis and reduced survival. Coadministration of celecoxib prevents these morphine-induced effects. In addition, morphine and celecoxib together provided better analgesia than either agent alone. Celecoxib prevents morphine-induced stimulation of COX-2, PGE 2 , angiogenesis, tumour growth, metastasis and mortality without compromising analgesia in a murine breast cancer model. In fact, the combination provided significantly better analgesia than with morphine or celecoxib alone. Clinical trials of this combination for analgesia in chronic and severe pain in cancer are warranted.
Opioids are sometimes used to treat pain in ulcerative wounds, and it is speculated that pain interferes with the healing process. Because the direct effect of opioids on this process remains unknown, we examined the effect of topically applied opioids on the healing of open ischemic wounds in rats. Topically applied opioids hastened wound closure, particularly in the first 4 days when no healing was initiated in phosphate buffered saline solution-treated wounds. After 1 week of application, fentanyl, hydromorphone, and morphine resulted in 66%, 55%, and 42% wound closure, respectively, as compared to only 15% in control wounds. Opioid-induced healing was accompanied by a 1.5- to 2.5-fold increase in nuclear density in the granulation tissue and 45-87% increase in angiogenesis as compared to phosphate buffered saline solution-treated wounds. Fentanyl showed significantly improved healing compared to morphine and hydromorphone (p < 0.05, fentanyl vs. others). Fentanyl-induced healing was inhibited by the opioid receptor antagonist naloxone, suggesting that peripheral opioid receptor(s) mediate the healing process. Opioids accelerate healing by up-regulating both endothelial and inducible nitric oxide synthase and the vascular endothelial-derived growth factor receptor Flk1 in the wounds. We envision that opioids can be used topically to accelerate wound healing in diverse clinical conditions ranging from surgical incisions to nonhealing ischemic ulcers in pathophysiological conditions and in hospice patients.
Background Topically applied opioids promote angiogenesis and healing of ischemic wounds in rats. We examined if topical fentanyl stimulates wound healing in diabetic rats by stimulating growth-promoting signaling, angiogenesis, lymphangiogenesis and nerve regeneration. Methods We used Zucker diabetic fatty rats that develop obesity and diabetes on a high fat diet due to a mutation in the Leptin receptor. Fentanyl blended with hydrocream was applied topically on ischemic wounds twice daily, and wound closure was analyzed regularly. Wound histology was analyzed by hematoxylin and eosin staining. Angiogenesis, lymphangiogenesis, nerve fibers and phospho-PDGFR-β were visualized by CD31-, lymphatic vessel endothelium-1, protein gene product 9.5- and anti-phospho PDGFR-β-immunoreactivity, respectively. Nitric oxide synthase (NOS) and PDGFR-β signaling were analyzed using Western immunoblotting. Results Fentanyl significantly promoted wound closure as compared to PBS. Histology scores were significantly higher in fentanyl-treated wounds, indicative of increased granulation tissue formation, reduced edema and inflammation, and increased matrix deposition. Fentanyl treatment resulted in increased wound angiogenesis, lymphatic vasculature, nerve fibers, nitric oxide, NOS and PDGFR-β signaling as compared to PBS. Phospho PDGFR-β co-localized with CD31 co-staining for vasculature. Conclusions Topically applied fentanyl promotes closure of ischemic wounds in diabetic rats. Increased angiogenesis, lymphangiogenesis, peripheral nerve regeneration, NO and PDGFR-β signaling are associated with fentanyl-induced tissue remodeling and wound healing.
We have previously shown that topical opioids including morphine and its congeners promote healing of full thickness ischemic wounds in rats. We examined the contribution of mu opioid receptor (MOPr)-mediated healing of full thickness ischemic wounds using MOPr and delta or kappa opioid receptor (DOPr or KOPr) knockout (KO) mice. Wound closure in the early (day 5) as well as later phases was delayed in topical morphine or PBS treated MOPr-KO mice compared to reciprocal treatments of wounds in wild-type (WT) mice. MOPr expression was significantly upregulated at 30 min in the wound margins and colocalized with wound margins and vasculature in the epidermal and dermal layers of the skin. We next examined whether neuropeptide expression was involved in the mechanism of MOPr-mediated wound closure. Substance P (SP) and calcitonin gene related peptide (CGRP) immunoreactivity (ir) was significantly increased in the skin of MOPr-KO mice as compared to WT mice. Neuropeptide-ir was increased significantly in PBS-treated wounds of MOPr and WT mice, but morphine treatment reduced neuropeptide immunoreactivity in both as compared to PBS. Wounding of keratinocytes led to the release of opioid peptide beta-endorphin (β-END) in conditioned medium, which stimulated the proliferation of endothelial cells. MOPr-selective (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2, CTOP) and non-selective OPr antagonist naloxone inhibited endothelial proliferation induced by wounded keratinocyte conditioned medium. Additionally, accelerated wound area closure in vitro by morphine was suppressed by methylnaltrexone, a non-selective OPr antagonist with high affinity for MOPr. Morphine and its congeners stimulated the proliferation of endothelial cells from WT mice but not those from MOPr-KO mice. Furthermore, morphine-induced mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) phosphorylation in endothelial cells was significantly decreased in MOPr-KO mice as compared to WT mice. Collectively, these data suggest that MOPr plays a critical role in the proliferation phase with the formation of granulation tissue during wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.