Unmanned aerial vehicles (UAVs) have emerged as a rapidly growing technology seeing unprecedented adoption in various application sectors due to their viability and low cost. However, UAVs have also been used to perform illegal and malicious actions, which have recently increased. This creates a need for technologies capable of detecting, classifying, and deactivating malicious and unauthorized drones. This paper reviews the trends and challenges of the most recent UAV detection methods, i.e., radio frequency-based (RF), radar, acoustic, and electro-optical, and localization methods. Our research covers different kinds of drones with a major focus on multirotors. The paper also highlights the features and limitations of the UAV detection systems and briefly surveys the UAV remote controller detection methods.
This communication article provides a call for unmanned aerial vehicle (UAV) users in archaeology to make imagery data more publicly available while developing a new application to facilitate the use of a common deep learning algorithm (mask region-based convolutional neural network; Mask R-CNN) for instance segmentation. The intent is to provide specialists with a GUI-based tool that can apply annotation used for training for neural network models, enable training and development of segmentation models, and allow classification of imagery data to facilitate auto-discovery of features. The tool is generic and can be used for a variety of settings, although the tool was tested using datasets from the United Arab Emirates (UAE), Oman, Iran, Iraq, and Jordan. Current outputs suggest that trained data are able to help identify ruined structures, that is, structures such as burials, exposed building ruins, and other surface features that are in some degraded state. Additionally, qanat(s), or ancient underground channels having surface access holes, and mounded sites, which have distinctive hill-shaped features, are also identified. Other classes are also possible, and the tool helps users make their own training-based approach and feature identification classes. To improve accuracy, we strongly urge greater publication of UAV imagery data by projects using open journal publications and public repositories. This is something done in other fields with UAV data and is now needed in heritage and archaeology. Our tool is provided as part of the outputs given.
The recent advancement in autonomous robotics is directed toward designing a reliable system that can detect and track multiple objects in the surrounding environment for navigation and guidance purposes. This paper aims to survey the recent development in this area and present the latest trends that tackle the challenges of multiple object tracking, such as heavy occlusion, dynamic background, and illumination changes. Our research includes Multiple Object Tracking (MOT) methods incorporating the multiple inputs that can be perceived from sensors such as cameras and Light Detection and Ranging (LIDAR). In addition, a summary of the tracking techniques, such as data association and occlusion handling, is detailed to define the general framework that the literature employs. We also provide an overview of the metrics and the most common benchmark datasets, including Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI), MOTChallenges, and University at Albany DEtection and TRACking (UA-DETRAC), that are used to train and evaluate the performance of MOT. At the end of this paper, we discuss the results gathered from the articles that introduced the methods. Based on our analysis, deep learning has introduced significant value to the MOT techniques in recent research, resulting in high accuracy while maintaining real-time processing.
Recent advancements in cloud computing, artificial intelligence, and the internet of things (IoT) create new opportunities for autonomous industrial environments monitoring. Nevertheless, detecting anomalies in harsh industrial settings remains challenging. This paper proposes an edge-fog-cloud architecture with mobile IoT edge nodes carried on autonomous robots for thermal anomalies detection in aluminum factories. We use companion drones as fog nodes to deliver first response services and a cloud back-end for thermal anomalies analysis. We also propose a self-driving deep learning architecture and a thermal anomalies detection and visualization algorithm. Our results show our robot surveyors are low-cost, deliver reduced response time, and more accurately detect anomalies compared to human surveyors or fixed IoT nodes monitoring the same industrial area. Our self-driving architecture has a root mean square error of 0.19 comparable to VGG-19 with a significantly reduced complexity and three times the frame rate at 60 frames per second. Our thermal to visual registration algorithm maximizes mutual information in the image-gradient domain while adapting to different resolutions and camera frame rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.