Fitting optical properties of metals is of great interest for numerical methods in electromagnetism, especially finite difference time domain (FDTD). However, this is a tedious task given that theoretical models used usually fail to interlink perfectly with the experimental data. However, in this paper, we propose a method for fitting the relative permittivity of metals by a sum of Drude-Lorentz or a sum of partial-fraction models. We use the particle swarm optimization (PSO) hybridized either with Nelder-Mead downhill simplex, or with gradient method. The main electronic transitions in metals help to guide the fitting process toward the solution. The method is automatic and applied blindly to silver, gold, copper, aluminum, chromium, platinum, and titanium.
Surface plasmon resonance sensors (SPR) using copper for sensitive parts are a competitive alternative to gold and silver. Copper oxide is a semiconductor and has a non-toxic nature. The unavoidable presence of copper oxide may be of interest as it is non-toxic, but it modifies the condition of resonance and the performance of the sensor. Therefore, the characterization of the optical properties of copper and copper oxide thin films is of interest. We propose a method to recover both the thicknesses and optical properties of copper and copper oxide from absorbance curves over the (0.9;3.5) eV range, and we use these results to numerically investigate the surface plasmon resonance of copper/copper oxide thin films. Samples of initial copper thicknesses 10, 30 and 50 nm, after nine successive oxidations, are systematically studied to simulate the signal of a Surface Plasmon Resonance setup. The results obtained from the resolution of the inverse problem of absorbance are used to discuss the performance of a copper-oxide sensor and, therefore, to evaluate the optimal thicknesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.