We present experimental und numerical investigations on the excitation, optimization and propagation of terahertz surface waves on silicon substrates. A single metamaterial layer is used to enhance the spatial confinement of the surface wave at the interface between air and silicon. The electric terahertz field of the surface wave is measured by a 2D near field scan.
In search of new technologies for optimizing the performance and space requirements of electronic and optical micro-circuits, the concept of spoof surface plasmon polaritons (SSPPs) has come to the fore of research in recent years. Due to the ability of SSPPs to confine and guide the energy of electromagnetic waves in a subwavelength space below the diffraction limit, SSPPs deliver all the tools to implement integrated circuits with a high integration rate. However, in order to guide SSPPs in the terahertz frequency range, it is necessary to carefully design metasurfaces that allow one to manipulate the spatio-temporal and spectral properties of the SSPPs at will. Here, we propose a specifically designed cut-wire metasurface that sustains strongly confined SSPP modes at terahertz frequencies. As we show by numerical simulations and also prove in experimental measurements, the proposed metasurface can tightly guide SSPPs on straight and curved pathways while maintaining their subwavelength field confinement perpendicular to the surface. Furthermore, we investigate the dependence of the spatio-temporal and spectral properties of the SSPP modes on the width of the metasurface lanes that can be composed of one, two or three cut-wires in the transverse direction. Our investigations deliver new insights into downsizing effects of guiding structures for SSPPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.