We proposed and created a methodology to solve a real-world problem, which is a special case of the generalized assignment problem. The problem consists of assigning drivers to harvesters, which will then be assigned to harvest sugarcane in order to maximize daily profit. A set of drivers have various levels of experience. Therefore, a different capability to harvest sugarcane leads to a range of daily wages. Each harvester has different operating years and engine size, which affects its fuel consumption rate and capacity to harvest sugarcane, respectively. Assigning a worker to a harvester can improve the fuel consumption and efficiency of the harvester. We developed a mathematical model to reflect this problem and to solve it to find the maximum outcome using Lingo v.11 commercial optimization software. Since Lingo v.11 is limited to solving only small-size test instances, for medium to large test instances, four modified differential evolution (MDE) algorithms were used to solve the problem: MDE-1, MDE-2, MDE-3, and MDE-4. MDE-2 was found to be the best proposed heuristics because it has intensification and diversification ability. MDE has been tested with the case study. We tried to increase the daily profit by implementing three strategies: (1) change all harvesters that are more than five years old, (2) train drivers to reach maximum capacity, and (3) a combination of 1 and 2. Each strategy has a different investment. The breakeven point (number of days) to return the investment was calculated from the increase of daily profit. The computational results show that strategy 2 is the best because it has the quickest rate of investment return rate. However, this strategy has a disadvantage, since it is possible that drivers may leave the company if they have been highly trained. Moreover, strategy 1 has an acceptable break-even point at 392 days.
This study aims to solve the real-world multistage assignment problem. The proposed problem is composed of two stages of assignment: (1) different types of trucks are assigned to chicken farms to transport young chickens to egg farms, and (2) chicken farms are assigned to egg farms. Assigning different trucks to the egg farms and different egg farms to the chicken farms generates different costs and consumes different resources. The distance and the idle space in the truck have to be minimized, while constraints such as the minimum number of chickens needed for all egg farms and the longest time that chickens can be in the truck remain. This makes the problem a special case of the multistage assignment (S-MSA) problem. A mathematical model representing the problem was developed and solved to optimality using Lingo v.11 optimization software. Lingo v.11 can solve to optimality only small- and medium-sized test instances. To solve large-sized test instances, the differential evolution (DE) algorithm was designed. An excellent decoding method was developed to increase the search performance of DE. The proposed algorithm was tested with three randomly generated datasets (small, medium, and large test instances) and one real case study. Each dataset is composed of 12 problems, therefore we tested with 37 instances, including the case study. The results show that for small- and medium-sized test instances, DE has 0.03% and 0.05% higher cost than Lingo v.11. For large test instances, DE has 3.52% lower cost than Lingo v.11. Lingo v.11 uses an average computation time of 5.8, 103, and 4320 s for small, medium and large test instances, while DE uses 0.86, 1.68, and 8.79 s, which is, at most, 491 times less than Lingo v.11. Therefore, the proposed heuristics are an effective algorithm that can find a good solution while using less computation time.
Abstract:This research aimed to solve the economic crop planning problem, considering transportation logistics to maximize the profit from cultivated activities. Income is derived from the selling price and production rate of the plants; costs are due to operating and transportation expenses. Two solving methods are presented: (1) developing a mathematical model and solving it using Lingo v.11, and (2) using three improved Differential Evolution (DE) Algorithms-I-DE-SW, I-DE-CY, and I-DE-KV-which are DE with swap, cyclic moves (CY), and K-variables moves (KV) respectively. The algorithms were tested by 16 test instances, including this case study. The computational results showed that Lingo v.11 and all DE algorithms can find the optimal solution eight out of 16 times. Regarding the remaining test instances, Lingo v.11 was unable to find the optimal solution within 400 h. The results for the DE algorithms were compared with the best solution generated within that time. The DE solutions were 1.196-1.488% better than the best solution generated by Lingo v.11 and used 200 times less computational time. Comparing the three DE algorithms, MDE-KV was the DE that was the most flexible, with the biggest neighborhood structure, and outperformed the other DE algorithms.
This article proposes a methodology to resolve the advertising method selection problem (AdSP). The use of different advertising methods for the same product can generate different responses in terms of the product’s sales volume. Companies selling products have limited resources for advertising, with challenges such as budget and time constraints. It is necessary that the correct advertising method is selected in order to increase the maximum profit, given these limited resources. In the present study, a mathematical model was developed to represent the AdSP, and optimization software (OS) was utilized to optimally resolve it. However, a larger problem can prevent OS from optimally resolving the problem within a reasonable timeframe. To overcome this challenge, the authors developed a metaheuristic called the improved differential evolution algorithm (IDE), which combines three metaheuristics: (1) The differential evolution algorithm (DE); (2) the iterated local search (ILS); and (3) the adaptive large neighborhood search (ALNS). The performance of IDE reflects the best elements of these three methods. The computational results show that IDE can generate solutions that are similar to the optimal solutions obtained by OS while using 69.25% less computational time than OS. IDE improved the efficiency compared with the three original component methods. Moreover, IDE also found better solutions than those found by the original DE, ILS, and ALNS.
This research presents a solution to the problem of planning the optimum area for economic crops by developed mathematical models and developed an algorithm to solve the problem of planning the optimum area by considered economic value for the maximize profit of farmers. The data were collected from farmers in 8 provinces in the northeastern region of Thailand. The 3 economic crops studied were rice, cassava and sugarcane. The solving problem methods were 1) Created mathematical models and solved the problems with Lingo V.11. 2) Improved Differential Evolution algorithms (I-DE) to solve the problems, which had 3 local search methods included (Swap, Cyclic Move and K-variable moves). The results of this study showed that in the small and medium problems instances, Lingo V.11 and DE provided equal profit outcome but DE was faster but in the large size of test instances DE generated better solution than that of Lingo v.11 when Lingo simulation time is set to 250 hours and DE simulation time has set to maximum 21.82 minutes. 2) Comparing DE and I-DE , I-DE outperforms DE in finding the better solution for all size of test instances (small, medium and large).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.