Rehabilitating patients with a resorbed maxilla presents several challenges when the desired treatment plan involves the placement of endosseous implants. Correct diagnosis requires knowledge on jaw healing patterns, systemic effects, and the impact of bone quality changes on implant success rates. Appropriate treatment planning requires an in-depth understanding of the materials and methods available to the contemporary implant surgeon. The clinician must be able to persist on evidence-based techniques and adhere to those proven methods. Successful surgical placement requires correct use of the available armamentarium and acceptance of the limitations that implant dentistry still presents. Especially challenging is the implant treatment of maxillary molars due to the plethora of complicating factors such as limited bone availability, interarch space challenges, sinus problems, etc. These are just a few of the factors that may lead us to placement of short implants in these sites. An extensive review of the literature that is available for short implants (implants < 10 mm in length) indicates that although they are commonly used in areas of the mouth under increased stress (posterior region), their success rates mimic those of longer implants when careful case selection criteria have been used. The available studies and case-series offer a valid rationale for placement of short implants so long as one understands the limitations, indications, risk factors, and limited studies that actually follow-up success rates of short implants for over 5 years. This review of the literature will provide the reader an in-depth view of the evidence in using short implants as an alternative treatment modality for the maxillary molar region.
Purpose:A new classification of maxillary sinus interfering septa based on its orientation is presented along with its relationship to the prevalence and severity of sinus membrane perforations. Additionally, the impact of membrane perforation on post-operative complications and marginal bone loss during the first year of loading is evaluated.Materials & Methods:Retrospective chart review of 79 consecutive sinus lift procedures with lateral window technique and 107 implants. Preoperative Cone Beam Computed Tomography (CBCT) images were evaluated for the incidence and the direction of maxillary septa. Chart notes were examined for the incidence of membrane perforation and postoperative complications. Measurements of mesial and distal marginal bone levels and average bone resorption adjacent to each implant were calculated in intraoral radiographs taken at implant placement and during follow up appointments.Results:Interfering septa were identified in 48.1 percent of sinuses. 71.1 percent of them had the septum oriented in a buccal-lingual direction (Class I). The overall incidence of membrane perforation was 22.8 percent, and the presence of an interfering septum on CBCT scan was found to be significantly associated with the occurrence of a sinus membrane perforation (P<0.001). The mean implant marginal bone loss for sinuses, which did not experience a membrane perforation, was 0.6±0.8mm, compared with 0.9 ± 0.9 mm for the sinuses that did experience a perforation (P = 0.325).Conclusion:Septa should be identified, classified and managed with a meticulous attention to technical details. A classification based on the septal orientation is proposed since the orientation of the septa can complicate the surgical procedure and requires modification of the surgical technique.
The aim of this paper was to determine the torque resistance of this new implant during placement in different types of bone, immediate placement into sockets, and in grafted bone. The torque at time of placement serves as an indication of initial stability, which is accepted as an important factor for implant osseointegration and immediate loading. Within a 13-month period, 140 NobelActive implants in 84 consecutive patients were placed into types I-IV bone in fresh sockets, and into grafted bone (both in maxillary sinuses and on the facial alveolar surfaces where bone had been lost). The final torque was measured with a manual torque control wrench as manufactured by Nobel Biocare for clinical use with this type of implant. One hundred forty implants with 3.5 to 5 mm diameters and 10 to 15 mm lengths were placed in different types of bone, either as delayed or immediate implants into fresh extraction sockets. These implants demonstrated a mean torque stability value of 50.8 Ncm. The average insertion torque for delayed implants was 49.7 Ncm. For immediate implants the average torque was 52.6 Ncm. Placement into soft bone was also favorable at an average of 47.9 Ncm. Typical straight walled and tapered implants generally exhibit 10 to 35 Ncm insertion torques. The NobelActive implant consistently reaches higher torque levels. This may indicate they are more favorably suited to early provisionalization and loading. Soft bone (type IV) did not seem to decrease significantly the torque of insertion of these implants. Further longer term studies are needed to investigate whether this indeed makes these implants more suited for early provisionalization and loading than traditional root form. Long term studies are also needed to investigate maintenance of bone levels surrounding these implants.
PurposeThe aim of this study was to evaluate and compare crestal bone levels (CBLs) after 1 year of loading of self-tapping bone condensing implants placed with high insertion torque (IT) compared to those placed with lower IT.Materials and methodsA retrospective chart review of 66 consecutive patients who received at least one self-tapping bone condensing implant and were in function for at least 1 year was conducted. On the basis of intrasurgical notes documenting the implant IT, the patient population was divided into group A (implant IT, >55 Ncm) and group B (IT, <55 Ncm). Radiographs taken immediately after insertion and during annual follow-up appointments were evaluated for detecting crestal bone loss. The relationship between IT and crestal bone loss, bone density, and jaw location were analyzed, and a P-value of 0.05 was considered to be statistically significant.ResultsA total of 113 self-tapping bone condensing NobelActive™ implants were placed. The average follow-up period from the placement of the implant restoration was 12.87 (±4.83) months. Six implants were classified as failures resulting in overall survival rate of 94.6%. Implants in group A had a mean IT of 67.35 ± 4.0 Ncm, whereas implants in the group B had a mean IT of 37.9 ± 12.62 Ncm. Implants in group A had statistically significant crestal bone loss compared to implants in group B (0.95 ± 1.60 and 0.18 ± 0.68 mm, respectively). Group A implants placed in the mandible showed significantly more pronounced crestal bone loss (2.12 ± 1.99 mm) compared to those placed in the maxilla (0.25 ± 0.65 mm; P<0.05); however, this was not the case in group B implants.ConclusionImplants inserted with high IT (>55 Ncm) showed more peri-implant bone remodeling than implants inserted with a less assertive IT (<55 Ncm). Bone density and jaw location affect IT and CBLs.
Recent advancements in barrier membranes, bone grafting substitutes, and surgical techniques have led to a predictable arsenal of treatment methods for clinicians who practice implant dentistry. The contemporary clinician is supplied with proven knowledge, substantiated materials, and instrument inventory that allows implant placement in cases that used to be reserved for the specialist in the past because of their complexity. Nowadays, postextraction alveolar ridge maintenance can be a predictable procedure and can certainly aid the clinician in preventing ridge collapse, thereby allowing for implant placement in a position that satisfies esthetics and function. Extraction socket maintenance for future implant therapy does not rule out immediate implant placement but rather provides an additional option when treatment planning implant patients. This article will focus on the concept of extraction socket preservation using regenerative materials. It will describe a technique suggested by the authors to resist bone resorption and soft tissue shrinkage following tooth extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.