Despite their well known limitations, in vitro experiments have several benefits over in vivo techniques when exploring foot biomechanics under conditions characteristic for gait.In this study, we present a new set-up for dynamic in vitro gait simulation that integrates a numerical model for generating the tibial kinematics control input and we present an innovative methodology to measure full 3D joint kinematics during gait simulations. The gait simulator applies forces to the tendons. Tibial kinematics in the sagittal plane is controlled using a numerical model that takes into account foot morphology. The methodology is validated by comparing joint rotations measured during gait simulation with those measured in vivo. In addition, reliability and accuracy of the control system as well as simulation input and output repeatability are quantified. The results reflect good control performance and repeatability of the control inputs, vertical ground reaction force, center of pressure displacement and joint rotations and translations. In addition, there is a good correspondence to in vivo kinematics for most patterns of motion at the ankle, subtalar and Chopart's joints. Therefore, these results show the relevance and validity of including specimen-specific information for defining the control inputs.
Background: Altered kinematics and persisting ankle instability have been associated with degenerative changes and osteochondral lesions. Purpose: To study the effect of ligament reconstruction surgery with suture tape augmentation (isolated anterior talofibular ligament [ATFL] vs combined ATFL and calcaneofibular ligament [CFL]) after lateral ligament ruptures (combined ATFL and CFL) on foot-ankle kinematics during simulated gait. Study Design: Controlled laboratory study. Methods: Five fresh-frozen cadaveric specimens were tested in a custom-built gait simulator in 5 different conditions: intact, ATFL rupture, ATFL-CFL rupture, ATFL-CFL reconstruction, and ATFL reconstruction. For each condition, range of motion (ROM) and the average angle (AA) in the hindfoot and midfoot joints were calculated during the stance phase of normal and inverted gait. Results: Ligament ruptures mainly changed ROM in the hindfoot and the AA in the hindfoot and midfoot and influenced the kinematics in all 3 movement directions. Combined ligament reconstruction was able to restore ROM in inversion-eversion in 4 of the 5 joints and ROM in internal-external rotation and dorsiflexion-plantarflexion in 3 of the 5 joints. It was also able to restore the AA in inversion-eversion in 2 of the 5 joints, the AA in internal-external rotation in all joints, and the AA in dorsiflexion-plantarflexion in 1 of the joints. Isolated ATFL reconstruction was able to restore ROM in inversion-eversion and internal-external rotation in 3 of the 5 joints and ROM in dorsiflexion-plantarflexion in 2 of the 5 joints. Isolated reconstruction was also able to restore the AA in inversion-eversion and dorsiflexion-plantarflexion in 2 of the joints and the AA in internal-external rotation in 3 of the joints. Both isolated reconstruction and combined reconstruction were most successful in restoring motion in the tibiocalcaneal and talonavicular joints and least successful in restoring motion in the talocalcaneal joint. However, combined reconstruction was still better at restoring motion in the talocalcaneal joint than isolated reconstruction (1/3 for ROM and 1/3 for the AA with isolated reconstruction compared to 1/3 for ROM and 2/3 for the AA with combined reconstruction). Conclusion: Combined ATFL-CFL reconstruction showed better restored motion immediately after surgery than isolated ATFL reconstruction after a combined ATFL-CFL rupture. Clinical Relevance: This study shows that ligament reconstruction with suture tape augmentation is able to partially restore kinematics in the hindfoot and midfoot at the time of surgery. In clinical applications, where the classic Broström-Gould technique is followed by augmentation with suture tape, this procedure may protect the repaired ligament during healing by limiting excessive ROM after a ligament rupture.
Background Joint loading conditions have an effect on the development and management of ankle osteoarthritis and on aseptic loosening after total ankle arthroplasty (TAA). Apart from body weight, compressive forces induced by muscle action may affect joint loading. However, few studies have evaluated the influence of individual muscles on the intraarticular pressure distribution in the ankle.Question/purposes The purpose of this study was to measure intraarticular pressure distribution and, in particular, (1) to quantify the effect of individual muscle action on peak-pressure magnitude; and (2) to identify the location of the center of pressure in the weightbearing native ankles and ankles that had TAA. Methods Peak pressure and intraarticular center of pressure were quantified during force alterations of four muscle groups (peronei, tibialis anterior, tibialis posterior, and triceps surae) in 10 cadaveric feet. The pressure was measured with a pressure sensitive array before and after implantation of a three-component mobile-bearing TAA prosthesis. Linear mixed-effects models were calculated and the y-intercept (b 0 ) and the slope (b 1 ) of the regression were used to quantify the size of the effect. Results Mean maximum peak pressures of 2 MPa (± 2.6 MPa) and 6.2 MPa (± 3.6 MPa) were measured for the native and TAA joint respectively. The triceps surae greatly affect the magnitude of peak pressure in the native ankle (slope b 1 = 0.174; p = 0.001) and TAA joint (slope b 1 = 0.416; p = 0.001). Furthermore, the force of most muscles caused a posterior and lateral shift of the center of pressure in both conditions. Conclusions Our results suggest that muscle force production has the potential to alter the pressure distribution in the native ankles and those with and TAA. Clinical Relevance Our study results help us to understand the effect of muscle forces on joint loading conditions which could be used in muscle training strategies and the design of better prosthetic components. Physical therapy or guided exercises may provide the potential to relieve areas in the joint that show signs of early osteoarthritis or reduce the contact stress on prosthetic components, potentially reducing the risk of TAA failure attributable to wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.