Highlights d A database combining genomic information and chromatin profiles for Marchantia d Correlations between chromatin marks and transcription are conserved in land plants d A significant portion of constitutive heterochromatin is marked by H3K27me3 d Insights into the evolution of TAD organization in plants
Genomes of higher eukaryotes contain many transposable elements, which often localize within the transcribed regions of active genes. Although intragenic transposable elements can be silenced to form heterochromatin, the impact of intragenic heterochromatin on transcription and RNA processing remains largely unexplored. Here we show using a flowering plant, Arabidopsis, that full-length transcript formation over intragenic heterochromatin depends on a protein named IBM2 (Increase in Bonsai Methylation 2), which has a Bromo-Adjacent Homology domain and an RNA recognition motif. Mutation of ibm2 triggers premature termination of transcripts with 3 0 RNA processing around intragenic heterochromatin at loci including the H3K9 demethylase gene IBM1. The need for IBM2 is circumvented in variant alleles that lack the heterochromatic domain. Our results reveal a mechanism that masks deleterious effects of intragenic heterochromatin, providing evolutionary sources for genetic and epigenetic variations.
Transposable elements (TEs) have a major impact on genome evolution, but they are potentially deleterious, and most of them are silenced by epigenetic mechanisms, such as DNA methylation. Here, we report the characterization of a TE encoding an activity to counteract epigenetic silencing by the host. In Arabidopsis thaliana, we identified a mobile copy of the Mutator‐like element (MULE) with degenerated terminal inverted repeats (TIRs). This TE, named Hiun (Hi), is silent in wild‐type plants, but it transposes when DNA methylation is abolished. When a Hi transgene was introduced into the wild‐type background, it induced excision of the endogenous Hi copy, suggesting that Hi is the autonomously mobile copy. In addition, the transgene induced loss of DNA methylation and transcriptional activation of the endogenous Hi. Most importantly, the trans‐activation of Hi depends on a Hi‐encoded protein different from the conserved transposase. Proteins related to this anti‐silencing factor, which we named VANC, are widespread in the non‐TIR MULEs and may have contributed to the recent success of these TEs in natural Arabidopsis populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.