Remote sensing has been used in Antarctic studies as an earth observation technique to study the polar region. A remote sensing forward model is an important tool in polar research to study and understand scattering mechanisms and sensitivity of physical parameters of snow and sea ice. In this paper, a reliable theoretical model to study sea ice is developed. The theoretical model in a prior work was improved by including multiple-surface scattering, based on an existing integral equation model and additional second-order surface-volume scattering. This model is applied to a desalinated ice layer above thick saline ice and analyzed using different frequencies, bottom surface roughness and sea-ice layer thickness. Improvement in calculation of the backscattering coefficient of the sea-ice layer is investigated for both co-polarized and cross-polarized returns. The effect on each scattering mechanism is also investigated, to understand in more detail the effect of surface multiple scattering and second-order surface-volume scattering. Comparisons are also made with field measurement results, to validate the theoretical model. Results show improvement in the total backscattering coefficient for cross-polarized return in the studied range, suggesting that multiple-surface scattering and surface-volume scattering up to second order are important scattering mechanisms in the sea-ice layer and should not be ignored in polar research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.