The time-resolved electric field in a fast ionization wave discharge in a diffuse nanosecond pulse discharge plasma in atmospheric pressure air is measured using the Electric Field Induced Second Harmonic (E-FISH) diagnostic. The electric field is placed on an absolute scale by calibration against a Laplacian field. At relatively low peak voltages, when the plasma is generated only near the pin high-voltage electrode, the electric field is measured ahead of the ionization wave during the entire voltage pulse, exhibiting a strong field enhancement compared to the Laplacian field, by about an order of magnitude. As the peak voltage is increased and the ionization wave traverses the laser beam, the electric field is measured both ahead of the wave and behind the ionization front, where the field drops rapidly due to the charge separation and plasma selfshielding. When the wave reaches the grounded electrode, the discharge transitions into a conduction phase in which the potential is redistributed within the gap. The electric field in the vicinity of the pin then increases again, following the applied voltage waveform for the rest of the pulse. The effective time resolution of the present measurements is 150 ps. Based on the single shot data, we find that the peak electric field in the wave front is moderately influenced by the applied voltage and varies between 160 to 210 kV/cm. This study demonstrates the viability of the E-FISH diagnostic for this class of atmospheric pressure discharges and paves the way for future in-depth studies of this particular problem.
We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.
The electric field in an ionization wave discharge in nitrogen at 20-100 mbar, initiated by positive polarity, high-voltage, ns duration pulses, is measured by ps second harmonic generation. The axial electric field component is determined both during the propagation of the ionization wave along the discharge tube, and after the wave reaches the grounded electrode, spanning the entire discharge gap. The temporal resolution of the present measurements is 200 ps, with the spatial resolution in the axial direction of approximately 0.5 mm. The second harmonic signal exhibits a quadratic dependence on the Laplacian electric field but indicates that in this pressure range most of the signal is generated within the wall of the tube. Absolute calibration of the signal is obtained from the current shunt data, after the ionization wave has reached the grounded electrode. Comparison of the data taken at different pressures shows that the peak value of the axial electric field in the wave front, 8-11 kV/cm, has a fairly weak dependence on pressure, with the peak reduced electric field reaching ≈2000 Td at 20 mbar. Reducing the pressure from 100 to 20 mbar, while keeping the discharge pulse voltage waveform the same, steepens the ionization wave front considerably, from 3.0 ns to 1.0 ns full width at half maximum. The results demonstrate that ps second harmonic generation may be employed for electric field measurements in lowpressure discharges, discharges sustained in small diameter capillary tubes, and discharges sustained in gas mixtures with low nonlinear susceptibility, at the conditions when the detection of the signal generated directly in the plasma is challenging. High temporal resolution of the present measurements indicates a possibility of detection of non-local electron kinetics effects induced by a rapidly varying, high peak value electric field in low and moderate pressure ionization wave discharges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.