In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation -collaborative filtering -on the basis of implicit feedback.Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering -the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items.By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural networkbased Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.
Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect.In this work, we propose to integrate the user-item interactionsmore specifically the bipartite graph structure -into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the useritem graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in useritem graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec [39] and Collaborative Memory Network [5]. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/ xiangwang1223/neural_graph_collaborative_filtering. CCS CONCEPTS• Information systems → Recommender systems.
Many predictive tasks of web applications need to model categorical variables, such as user IDs and demographics like genders and occupations. To apply standard machine learning techniques, these categorical predictors are always converted to a set of binary features via one-hot encoding, making the resultant feature vector highly sparse. To learn from such sparse data e ectively, it is crucial to account for the interactions between features.Factorization Machines (FMs) are a popular solution for e ciently using the second-order feature interactions. However, FM models feature interactions in a linear way, which can be insu cient for capturing the non-linear and complex inherent structure of real-world data. While deep neural networks have recently been applied to learn non-linear feature interactions in industry, such as the Wide&Deep by Google and DeepCross by Microso , the deep structure meanwhile makes them di cult to train.In this paper, we propose a novel model Neural Factorization Machine (NFM) for prediction under sparse se ings. NFM seamlessly combines the linearity of FM in modelling second-order feature interactions and the non-linearity of neural network in modelling higher-order feature interactions. Conceptually, NFM is more expressive than FM since FM can be seen as a special case of NFM without hidden layers. Empirical results on two regression tasks show that with one hidden layer only, NFM signi cantly outperforms FM with a 7.3% relative improvement. Compared to the recent deep learning methods Wide&Deep and DeepCross, our NFM uses a shallower structure but o ers be er performance, being much easier to train and tune in practice.
This paper contributes improvements on both the effectiveness and efficiency of Matrix Factorization (MF) methods for implicit feedback. We highlight two critical issues of existing works. First, due to the large space of unobserved feedback, most existing works resort to assign a uniform weight to the missing data to reduce computational complexity. However, such a uniform assumption is invalid in real-world settings. Second, most methods are also designed in an offline setting and fail to keep up with the dynamic nature of online data.We address the above two issues in learning MF models from implicit feedback. We first propose to weight the missing data based on item popularity, which is more effective and flexible than the uniform-weight assumption. However, such a non-uniform weighting poses efficiency challenge in learning the model. To address this, we specifically design a new learning algorithm based on the element-wise Alternating Least Squares (eALS) technique, for efficiently optimizing a MF model with variably-weighted missing data. We exploit this efficiency to then seamlessly devise an incremental update strategy that instantly refreshes a MF model given new feedback. Through comprehensive experiments on two public datasets in both offline and online protocols, we show that our eALS method consistently outperforms state-of-the-art implicit MF methods. Our implementation is available at https://github.com/hexiangnan/sigir16-eals.
Visual relations, such as "person ride bike" and "bike next to car", offer a comprehensive scene understanding of an image, and have already shown their great utility in connecting computer vision and natural language. However, due to the challenging combinatorial complexity of modeling subject-predicate-object relation triplets, very little work has been done to localize and predict visual relations. Inspired by the recent advances in relational representation learning of knowledge bases and convolutional object detection networks, we propose a Visual Translation Embedding network (VTransE) for visual relation detection. VTransE places objects in a low-dimensional relation space where a relation can be modeled as a simple vector translation, i.e., subject + predicate ≈ object. We propose a novel feature extraction layer that enables object-relation knowledge transfer in a fully-convolutional fashion that supports training and inference in a single forward/backward pass. To the best of our knowledge, VTransE is the first end-toend relation detection network. We demonstrate the effectiveness of VTransE over other state-of-the-art methods on two large-scale datasets: Visual Relationship and Visual Genome. Note that even though VTransE is a purely visual model, it is still competitive to the Lu's multi-modal model with language priors [28].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.