Digital instrumentation and control (I&C) upgrades are a vital research area for nuclear industry. Despite their performance benefits, deployment of digital I&C in nuclear power plants (NPPs) has been limited. Digital I&C systems exhibit complex failure modes including common cause failures (CCFs) which can be difficult to identify. This paper describes the development of a redundancy-guided application of the Systems-Theoretic Process Analysis (STPA) and Fault Tree Analysis (FTA) for the hazard analysis of digital I&C in advanced NPPs. The resulting Redundancy-guided System-theoretic Hazard Analysis (RESHA) is applied for the case study of a representative state-of-the-art digital reactor trip system. The analysis qualitatively and systematically identifies the most critical CCFs and other hazards of digital I&C systems. Ultimately, RESHA can help researchers make informed decisions for how, and to what degree, defensive measures such as redundancy, diversity, and defense-in-depth can be used to mitigate or eliminate the potential hazards of digital I&C systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.