Electromagnetic wave propagation in optical fiber amplifiers obeys Maxwell equations. Using coupled mode theory, the full Maxwell system within an optical fiber amplifier is reduced to a simpler model. The simpler model is made more efficient through a new scale model, referred to as an equivalent short fiber, which captures some of the essential characteristics of a longer fiber. The equivalent short fiber can be viewed as a fiber made using artificial (unphysical) material properties that in some sense compensates for its reduced length. The computations can be accelerated by a factor approximately equal to the ratio of the original length to the reduced length of the equivalent fiber. Computations using models of two commercially available fibers -one doped with ytterbium, and the other with thulium -show the practical utility of the concept. Extensive numerical studies are conducted to assess when the equivalent short fiber model is useful and when it is not.
This work uses numerical simulations of a thulium-doped optical fiber amplifier to predict various performance characteristics such as peak temperatures, expected output powers and efficiencies, presence of amplified spontaneous emission (ASE), and transverse mode instability (TMI) onset power thresholds. Single- and two-tone configurations are studied. In the latter case, the two laser sources are separated in frequency by the amount that corresponds to the peak Raman gain, and a few seed ratios at various total seed powers are examined. The goal is to provide the field with pertinent information on what is feasible for this type of amplifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.