Salivary glands are essential organs that produce and secrete saliva to the oral cavity. During gland morphogenesis, many developmental processes involve a series of coordinated movements and reciprocal interactions between the epithelium and mesenchyme that generate the ductal system and the secretory units. Recent studies have shown new findings about salivary gland development, particularly regarding lumen formation and expansion, with the involvement of apoptosis and cell polarization, respectively. Moreover, it has been observed that human minor salivary glands start forming earlier than previously published and that distinct apoptotic mediators can trigger duct lumen opening in humans. This review summarizes updated morphological and cellular features of human salivary glands and also explores new aspects of the human developmental process. Anat Rec, 300:1180-1188, 2017. © 2017 Wiley Periodicals, Inc.
Fgf10 is necessary for the development of a number of organs that fail to develop or are reduced in size in the null mutant. Here we have knocked out Fgf10 specifically in the neural crest driven by Wnt1cre. The Wnt1creFgf10fl/fl mouse phenocopies many of the null mutant defects, including cleft palate, loss of salivary glands, and ocular glands, highlighting the neural crest origin of the Fgf10 expressing mesenchyme surrounding these organs. In contrast tissues such as the limbs and lungs, where Fgf10 is expressed by the surrounding mesoderm, were unaffected, as was the pituitary gland where Fgf10 is expressed by the neuroepithelium. The circumvallate papilla of the tongue formed but was hypoplastic in the conditional and Fgf10 null embryos, suggesting that other sources of FGF can compensate in development of this structure. The tracheal cartilage rings showed normal patterning in the conditional knockout, indicating that the source of Fgf10 for this tissue is mesodermal, which was confirmed using Wnt1cre-dtTom to lineage trace the boundary of the neural crest in this region. The thyroid, thymus, and parathyroid glands surrounding the trachea were present but hypoplastic in the conditional mutant, indicating that a neighboring source of mesodermal Fgf10 might be able to partially compensate for loss of neural crest derived Fgf10.
Salivary glands are essential for the maintenance of oral health by providing lubrication and antimicrobial protection to the mucosal and tooth surfaces. Saliva is modified and delivered to the oral cavity by a complex multifunctional ductal system. During development, these ducts form as solid tubes, which undergo cavitation to create lumens. Apoptosis has been suggested to play a role in this cavitation process along with changes in cell polarity. Here, we show that apoptosis occurs from the very earliest stages of mouse salivary gland development, much earlier than previously reported. Apoptotic cells were observed in the center of the first epithelial stalk at early-stage embryonic day 12.5 (E12.5) according to both TUNEL staining and cleaved caspase 3 immunofluorescence. The presumptive lumen space was highlighted by the colocalization of a predictive lumen marker, cytokeratin 7. At E14.5, as lumens start to form throughout the glands, apoptotic expression decreased while cytokeratin 7 remained positive. In vitro inhibition of all caspases in E12.5 and E13.5 salivary glands resulted in wider ducts, as compared with the controls, and a defect in lumen formation. In contrast, no such defect in lumen formation was observed at E14.5. Our data indicate that apoptosis is involved during early stages of gland formation (E12.5 onward) and appears important for shaping the forming ducts.
a diffuse expression in mucous and serous acini, in addition to strong apical membrane expression within lumen of intercalated ductal cells. This topographic analysis of AQP1, 3 and 5 revealed differences in the expression pattern throughout salivary gland developmental stages, suggesting different roles for each protein in human glandular maturation.
The middle ear epithelium is derived from neural crest and endoderm, which line distinct regions of the middle ear cavity. Here, we investigate the distribution of putative stem cell markers in the middle ear, combined with an analysis of the location of label-retaining cells (LRCs) to create a map of the middle ear mucosa. We show that proliferating cells and LRCs were associated with specific regions of the ear epithelium, concentrated in the hypotympanum at the base of the auditory bulla and around the ear drum. Sox2 was widely expressed in the endodermally derived ciliated pseudostratified epithelium of the hypotympanum. This part of the middle ear showed high levels of Wnt activity, as indicated by the expression of Axin2, a readout of Wnt signalling. Keratin 5 showed a more restricted expression within the basal cells of this region, with very little overlap between the Sox2- and keratin 5-positive epithelium, indicating that these genes mark distinct populations. Little expression of Sox2 or keratin 5 was observed in the neural crest-derived middle ear epithelium that lined the promontory, except in cases of otitis media when this epithelium underwent hyperplasia. This study lays the foundation for furthering our understanding of homeostasis and repair in the middle ear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.