The Svx proteins are virulence factors of phytopathogenic bacteria of the Pectobacterium genus. The specific functions of these proteins are unknown. Here we show that most of the phytopathogenic species of Pectobacterium, Dickeya, and Xanthomonas genera have genes encoding Svx proteins, as well as some plant-non-associated species of different bacterial genera. As such, the Svx-like proteins of phytopathogenic species form a distinct clade, pointing to the directed evolution of these proteins to provide effective interactions with plants. To get a better insight into the structure and functions of the Svx proteins, we analyzed the Svx of Pectobacterium atrosepticum (Pba)—an extracellular virulence factor secreted into the host plant cell wall (PCW). Using in silico analyses and by obtaining and analyzing the recombinant Pba Svx and its mutant forms, we showed that this protein was a gluzincin metallopeptidase. The 3D structure model of the Pba Svx was built and benchmarked against the experimental overall secondary structure content. Structure-based substrate specificity analysis using molecular docking revealed that the Pba Svx substrate-binding pocket might accept α-glycosylated proteins represented in the PCW by extensins—proteins that strengthen the PCW. Thus, these results elucidate the way in which the Pba Svx may contribute to the Pba virulence.
The phytohormone abscisic acid (ABA) plays an important role in plant growth and in response to abiotic stress factors. At the same time, its accumulation in soil can negatively affect seed germination, inhibit root growth and increase plant sensitivity to pathogens. ABA is an inert compound resistant to spontaneous hydrolysis and its biological transformation is scarcely understood. Recently, the strain Rhodococcus sp. P1Y was described as a rhizosphere bacterium assimilating ABA as a sole carbon source in batch culture and affecting ABA concentrations in plant roots. In this work, the intermediate product of ABA decomposition by this bacterium was isolated and purified by preparative HPLC techniques. Proof that this compound belongs to ABA derivatives was carried out by measuring the molar radioactivity of the conversion products of this phytohormone labeled with tritium. The chemical structure of this compound was determined by instrumental techniques including high-resolution mass spectrometry, NMR spectrometry, FTIR and UV spectroscopies. As a result, the metabolite was identified as (4RS)-4-hydroxy-3,5,5-trimethyl-4-[(E)-3-oxobut-1-enyl]cyclohex-2-en-1-one (dehydrovomifoliol). Based on the data obtained, it was concluded that the pathway of bacterial degradation and assimilation of ABA begins with a gradual shortening of the acyl part of the molecule.
The secondary structure alterations, accompanying isothermal and temperature guided beta-casein micellization have been studied by dynamic light scattering, circular dichroism and Fourier transform infrared spectroscopy techniques. Micelle formation induced by increase of protein concentration at constant temperature is accompanied by the formation of scanty number of additional peptide hydrogen bonds, preliminary assigned to intraprotein beta-structure. Heating results in more pronounced but qualitatively different changes consisted in dehydration of peptide groups and disruption of polyproline II helix segments with subsequent conversion to random and beta-turns. Nevertheless, in both cases the total number of residues involved in transition is quite few and cannot be regarded as a decisive factor for casein micellization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.