Large scale isolation—in gram quantities—of dissolved organic matter (DOM) from natural waters is necessary for detailed investigation of its role in chemical and microbial processes driving carbon cycling under conditions of global climate change. The best candidate for a use in these large-scale experiments is a bulk sorbent Bondesil PPL, which has the same modification as the widely used Bond Elut PPL sorbent. There have been no studies so far reported on interchangeability of these sorbents with regard to DOM isolation. This work was devoted to comparative studies on sorption efficiency and molecular selectivity of these two sorbents—Bond Elut PPL and Bondesil PPL with regard to DOM components. Fulvic acids (FA) from peat water leachate were used as a model DOM. Laboratory solid phase extraction (SPE) setup was used for monitoring sorption recovery and extraction yield. It included three parallel experiments on pre-packed Bond Elut PPL cartridges (500 mg/3 mL) and three self-packed Bondesil PPL cartridges (500 mg/3 mL). Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS) and 13C/1H nuclear magnetic resonance (NMR) spectroscopy were used for determination of molecular and structural group compositions of the FA isolates obtained with a use of two different sorbents. The results of this study allowed a conclusion on interchangeability of the two sorbents used in this study for the purposes of DOM isolation from natural waters. This conclusion was backed up by similarity of sorption behavior of the peat FA components on both sorbents and by high similarity of molecular compositions and carbon distribution among the main structural groups.
Natural products (e.g., polyphenols) have been used as biologically active compounds for centuries. Still, the mechanisms of biological activity of these multicomponent systems are poorly understood due to a lack of appropriate experimental techniques. The method of tritium thermal bombardment allows for non-selective labeling and tracking of all components of complex natural systems. In this study, we applied it to label two well-characterized polyphenolic compounds, peat fulvic acid (FA-Vi18) and oxidized lignin derivative (BP-Cx-1), of predominantly hydrophilic and hydrophobic character, respectively. The identity of the labeled samples was confirmed using size exclusion chromatography. Using ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS), key differences in the molecular composition of BP-Cx-1 and FA-Vi18 were revealed. The labeled samples ([3H]-FA-Vi18 (10 mg/kg) and [3H]-BP-Cx-1 (100 mg/kg)) were administered to female BALB/c mice intravenously (i.v.) and orally. The label distribution was assessed in blood, liver, kidneys, brain, spleen, thymus, ovaries, and heart using liquid scintillation counting. Tritium label was found in all organs studied at different concentrations. For the fulvic acid sample, the largest accumulation was observed in the kidney (Cmax 28.5 mg/kg and 5.6 mg/kg, respectively) for both routes. The organs of preferential accumulation of the lignin derivative were the liver (Cmax accounted for 396.7 and 16.13 mg/kg for i.v. and p.o. routes, respectively) and kidney (Cmax accounted for 343.3 and 17.73 mg/kg for i.v. and p.o. routes, respectively). Our results demonstrate that using the tritium labeling technique enabled successful pharmacokinetic studies on polyphenolic drugs with very different molecular compositions. It proved to be efficient for tissue distribution studies. It was also shown that the dosage of the polyphenolic drug might be lower than 10 mg/kg due to the sensitivity of the 3H detection technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.