It is surprising difficult to define where a city center lies, yet its location has a profound effect on a city's structure and function. We examine whether city center typicality points can be consistently located on historical maps such that their centroid identifies a meaningful central location over a 500-year period in Southampton, UK. We compare movements of this city center centroid against changes in the geographical center of the city as defined by its boundary. Southampton's historical maps were georectified with a mean accuracy of 21 m (range 9.9 to 47 m), and 18 to 102 typicality points were identified per map, enough to chart changes in the city center centroid through time. Over nearly 500 years, Southampton's center has moved just 343 m, often corresponding with the key retail attractants of the time, while its population has increased 80-fold, its administrative area 60-fold and its geographical center moved 1985 m. This inertia to change in the city center presents environmental challenges for the present-day, made worse by the geography of Southampton, bounded by the sea, rivers and major roads. Geographical context, coupled with planning decisions in the past that maintain a city center in its historical location, place limits on the current sustainability of a city.
Continuous exposure to noise can lead to premature hearing loss, reduced cognitive performance, insomnia, stress, hypertension, cardiovascular diseases and stroke. Road noise affects the health of >125 million people in the European Union and Member States are required to map major noise hotspots. These strategic noise maps are usually derived from traffic counts and propagation models because large-scale measurement of the acoustic environment using conventional methods is infeasible. In this study, the authors surveyed the entire city of Southampton, UK using a mobile survey technique, capturing spatial variations in street-level sound characteristics across multiple frequencies from all sound sources. Over 52,000 calibrated and georeferenced sound clips covering 11 Hz to 22.7 kHz are analysed here to investigate variations in sound frequency composition across urban space and then applied to two issues: the definition of naturalness in the acoustic environment; and perceptions of social inequity in sound exposure. Clusters of acoustic characteristics were identified and mapped using spectral clustering and principal components analysis based on octave bands, ecoacoustic indices and dBA. We found independent patterns in low, mid and high frequencies, and the ecoacoustic indices that related to land use. Ecoacoustic indices partially mapped onto greenspace, identifying naturalness, but not uniquely, probably because urban anthropogenic sounds occur at higher frequencies than in the natural areas where such indices were developed. There was some evidence of inequity in sound exposure according to social deprivation and ethnicity, and results differed according to frequency bands. The consequences of these findings and the benefits of city-wide sound surveys for urban planning are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.