The aim of this work was to characterize quantitatively the arrangement of mitochondria in heart and skeletal muscles. We studied confocal images of mitochondria in nonfixed cardiomyocytes and fibers from soleus and white gastrocnemius muscles of adult rats. The arrangement of intermyofibrillar mitochondria was analyzed by estimating the densities of distribution of mitochondrial centers relative to each other (probability density function). In cardiomyocytes (1,820 mitochondrial centers marked), neighboring mitochondria are aligned along a rectangle, with distance between the centers equal to 1.97 Ϯ 0.43 and 1.43 Ϯ 0.43 m in the longitudinal and transverse directions, respectively. In soleus (1,659 mitochondrial centers marked) and white gastrocnemius (621 pairs of mitochondria marked), mitochondria are mainly organized in pairs at the I-band level. Because of this organization, there are two distances characterizing mitochondrial distribution in the longitudinal direction in these muscles. The distance between mitochondrial centers in the longitudinal direction within the same I band is 0.91 Ϯ 0.11 and 0.61 Ϯ 0.07 m in soleus and white gastrocnemius, respectively. The distance between mitochondrial centers in different I bands is ϳ3.7 and ϳ3.3 m in soleus and gastrocnemius, respectively. In the transverse direction, the mitochondria are packed considerably closer to each other in soleus than in white gastrocnemius, with the distance equal to 0.75 Ϯ 0.22 m in soleus and 1.09 Ϯ 0.41 m in gastrocnemius. Our results show that intermyofibrillar mitochondria are arranged in a highly ordered crystal-like pattern in a muscle-specific manner with relatively small deviation in the distances between neighboring mitochondria. This is consistent with the concept of the unitary nature of the organization of the muscle energy metabolism. confocal microscopy; quantitative analysis; cardiac and skeletal muscles; probability density function; unitary structure of cells RECENT STUDIES HAVE SHOWN the existence of multiple specific functional interactions among mitochondria, sarcoplasmic reticulum (SR), and myofibrils in permeabilized muscle fibers (5,14,30,34). Namely, endogenous ATP has been shown to be more efficient than exogenous ATP in maintaining calcium uptake into SR (14). In addition, kinetic studies have shown a direct supply of endogenous ADP from ATPases to mitochondria (30, 34). Such interaction can be explained by the existence of localized intracellular diffusion restrictions (28, 39). A mild treatment of the fibers with trypsin leads to the removal of these diffusion restrictions, and at the same time, distribution of mitochondria in the fiber is changed from regular arrangement in the control to random distribution after the treatment (28). Similarly, in ischemic hearts, various alterations in mitochondrial function such as the significant decrease in maximal respiration rate and half-saturation constant for ADP were observed in parallel with the changes in structural organization of the cardiac muscle cells (7,1...
It is a well-known phenomenon that in permeabilized oxidative muscle cells the apparent K m for exogenous ADP in the control of mitochondrial respiration is very high, in the range of 250-350 mM, in contrast with isolated mitochondria in vitro (where the apparent K m for ADP is 15-20 mM: Kummel 1988;Saks et al. 1991Saks et al. , 1993Saks et al. , 1994Saks et al. , 1995Saks et al. , 1998bSaks et al. , 2001Fontaine et al. 1995;Veksler et al. 1995;Kuznetsov et al. 1996; Kay et al. 1997a,b,c;Milner et al. 2000;Anflous et al. 2001;Braun et al. 2001;Seppet et al. 2001;Toleikis et al. 2001;Burelle & Hochachka, 2002;Dos Santos et al. 2002). Simplistic explanation of these differences by the formation of ADP concentration gradients between the medium and the core of the cells can be excluded, since the Brownian movement of ADP in the water solution is much more rapid for a diffusion distance of less than 10 mm than the metabolic turnover of ADP and ATP . A high value of the apparent K m for exogenous ADP is also observed in 'ghost' muscle cells after the extraction of myosin in 800 mM KCl (Kay et al. 1997b). Moreover, we know that the rupture of outer mitochondrial membrane in hyposmotic conditions decreases the value of this parameter (Saks et al. 1993). Thus, in the cells in vivo the low permeability of the outer mitochondrial membrane for ADP and ATP is controlled by some intracellular factors. The decrease of apparent K m for exogenous ADP The origin of significant differences between the apparent affinities of heart mitochondrial respiration for exogenous ADP in isolated mitochondria in vitro and in permeabilized cardiomyocytes or skinned fibres in situ is critically analysed. All experimental data demonstrate the importance of structural factors of intracellular arrangement of mitochondria into functional complexes with myofibrils and sarcoplasmic reticulum in oxidative muscle cells and the control of outer mitochondrial membrane permeability. It has been shown that the high apparent K m for exogenous ADP (250-350 mM) in permeabilized cells and in ghost cells (without myosin) and fibres (diameter 15-20 mm) is independent of intrinsic MgATPase activity. However, the K m may be decreased significantly by a selective proteolytic treatment, which also destroys the regular arrangement of mitochondria between sarcomeres and increases the accessibility of endogenous ADP to the exogenous pyruvate kinase-phosphoenolpyruvate system. The confocal microscopy was used to study the changes in intracellular distribution of mitochondria and localization of cytoskeletal proteins, such as desmin, tubulin and plectin in permeabilized cardiac cells during short proteolytic treatment. The results show the rapid collapse of microtubular and plectin networks but not of desmin localization under these conditions. These results point to the participation of cytoskeletal proteins in the intracellular organization and control of mitochondrial function in the cells in vivo, where mitochondria are incorporated into functional complexes with sa...
Heterogeneity of ADP diffusion and regulation of respiration were studied in permeabilized cardiomyocytes and cardiac fibers in situ and in silico. Regular arrangement of mitochondria in cells was altered by short-time treatment with trypsin and visualized by confocal microscopy. Manipulation of matrix volumes by changing K(+) and sucrose concentrations did not affect the affinity for ADP either in isolated heart mitochondria or in skinned fibers. Pyruvate kinase (PK)-phosphoenolpyruvate (PEP) were used to trap ADP generated in Ca,MgATPase reactions. Inhibition of respiration by PK-PEP increased 2-3 times after disorganization of regular mitochondrial arrangement in cells. ADP produced locally in the mitochondrial creatine kinase reaction was not accessible to PK-PEP in intact permeabilized fibers, but some part of it was released from mitochondria after short proteolysis due to increased permeability of outer mitochondrial membrane. In in silico studies we show by mathematical modeling that these results can be explained by heterogeneity of ADP diffusion due to its restrictions at the outer mitochondrial membrane and in close areas, which is changed after proteolysis. Localized restrictions and heterogeneity of ADP diffusion demonstrate the importance of mitochondrial functional complexes with sarcoplasmic reticulum and myofibrillar structures and creatine kinase in regulation of oxidative phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.