The production and consumption of fresh mushrooms has experienced a significant increase in recent decades. This trend has been driven mainly by their nutritional value and by the presence of bioactive and nutraceutical components that are associated with health benefits, which has led some to consider them a functional food. Mushrooms represent an attractive food for vegetarian and vegan consumers due to their high contents of high-biological-value proteins and vitamin D. However, due to their high respiratory rate, high water content, and lack of a cuticular structure, mushrooms rapidly lose quality and have a short shelf life after harvest, which limits their commercialization in the fresh state. Several traditional preservation methods are used to maintain their quality and extend their shelf life. This article reviews some preservation methods that are commonly used to preserve fresh mushrooms and promising new preservation techniques, highlighting the use of new packaging systems and regulations aimed at the development of more sustainable packaging.
The use of EOs nanoemulsion to develop active edible films offers a new way to modify transport properties and to release active compounds while improving mechanical resistance, transparency, and antioxidant and antimicrobial activity. The aim of this study was to study the influence of homogenization conditions and carvacrol content on the microstructure and physical properties of edible nanoemulsified chitosan films. Film-forming emulsions (FFE) were prepared with chitosan (1.5%), Tween 80 (0.5%), and carvacrol (0.25%, 0.5%, and 1.0%); two homogenization methods were used (rotor-stator and rotor-stator followed by high-pressure homogenization). Film internal and surface microstructure was characterized by scanning electron microscopy (SEM) and film physical properties, such as mechanical, optical, and water barrier, were evaluated. Results showed that the high-pressure homogenization method promoted a significant change on film microstructure, leading to improved properties. Carvacrol droplets were smaller and homogeneously distributed in the film when 0.5% (v/v) carvacrol was incorporated (1:1 Tween 80: carvacrol ratio). As a consequence, emulsified films obtained at high pressure were less opaque, had greater elongation, and had a lower permeability to water vapor than those obtained by the rotor-stator method. Therefore, high-pressure homogenization is a good method to obtain edible emulsified films with desirable properties for food preservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.