The mixtools package for R provides a set of functions for analyzing a variety of finite mixture models. These functions include both traditional methods, such as EM algorithms for univariate and multivariate normal mixtures, and newer methods that reflect some recent research in finite mixture models. In the latter category, mixtools provides algorithms for estimating parameters in a wide range of different mixture-of-regression contexts, in multinomial mixtures such as those arising from discretizing continuous multivariate data, in nonparametric situations where the multivariate component densities are completely unspecified, and in semiparametric situations such as a univariate location mixture of symmetric but otherwise unspecified densities. Many of the algorithms of the mixtools package are EM algorithms or are based on EM-like ideas, so this article includes an overview of EM algorithms for finite mixture models.
Abstract:We propose an algorithm for nonparametric estimation for finite mixtures of multivariate random vectors that strongly resembles a true EM algorithm. The vectors are assumed to have independent coordinates conditional upon knowing which mixture component from which they come, but otherwise their density functions are completely unspecified. Sometimes, the density functions may be partially specified by Euclidean parameters, a case we call semiparametric. Our algorithm is much more flexible and easily applicable than existing algorithms in the literature; it can be extended to any number of mixture components and any number of vector coordinates of the multivariate observations. Thus it may be applied even in situations where the model is not identifiable, so care is called for when using it in situations for which identifiability is difficult to establish conclusively. Our algorithm yields much smaller mean integrated squared errors than an alternative algorithm in a simulation study. In another example using a real dataset, it provides new insights that extend previous analyses. Finally, we present two different variations of our algorithm, one stochastic and one deterministic, and find anecdotal evidence that there is not a great deal of difference between the performance of these two variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.