IntroductionCoronavirus SARS-CoV-2 is a causative agent responsible for the current global pandemic situation known as COVID-19. Clinical manifestations of COVID-19 include a wide range of symptoms from mild (i.e., cough, fever, dyspnea) to severe pneumonia-like respiratory symptoms. SARS-CoV-2 has been demonstrated to be detectable in the stool of COVID-19 patients. Waste-based epidemiology (WBE) has been shown as a promising approach for early detection and monitoring of SARS-CoV-2 in the local population performed via collection, isolation, and detection of viral pathogens from environmental sources.MethodsIn order to select the optimal protocol for monitoring the COVID-19 epidemiological situation in region Turiec, Slovakia, we (1) compared methods for SARS-CoV-2 separation and isolation, including virus precipitation by polyethylene glycol (PEG), virus purification via ultrafiltration (Vivaspin®) and subsequent isolation by NucleoSpin RNA Virus kit (Macherey-Nagel), and direct isolation from wastewater (Zymo Environ Water RNA Kit); (2) evaluated the impact of water freezing on SARS- CoV-2 separation, isolation, and detection; (3) evaluated the role of wastewater filtration on virus stability; and (4) determined appropriate methods including reverse transcription-droplet digital PCR (RT-ddPCR) and real-time quantitative polymerase chain reaction (RT-qPCR) (targeting the same genes, i.e., RdRp and gene E) for quantitative detection of SARS-CoV-2 in wastewater samples.Results(1) Usage of Zymo Environ Water RNA Kit provided superior quality of isolated RNA in comparison with both ultracentrifugation and PEG precipitation. (2) Freezing of wastewater samples significantly reduces the RNA yield. (3) Filtering is counterproductive when Zymo Environ Water RNA Kit is used. (4) According to the specificity and sensitivity, the RT-ddPCR outperforms RT-qPCR.DiscussionThe results of our study suggest that WBE is a valuable early warning alert and represents a non-invasive approach to monitor viral pathogens, thus protects public health on a regional and national level. In addition, we have shown that the sensitivity of testing the samples with a nearer detection limit can be improved by selecting the appropriate combination of enrichment, isolation, and detection methods.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monitoring in air traffic is important in the prevention of the virus spreading from abroad. The gold standard for SARS-CoV-2 detection is RT-qPCR; however, for early and low viral load detection, a much more sensitive method, such as droplet digital PCR (ddPCR), is required. Our first step was to developed both, ddPCR and RT-qPCR methods, for sensitive SARS-CoV-2 detection. Analysis of ten swab/saliva samples of five Covid-19 patients in different stages of disease showed positivity in 6/10 samples with RT-qPCR and 9/10 with ddPCR. We also used our RT-qPCR method for SARS-CoV-2 detection without the need of RNA extraction, obtaining results in 90-120 minutes. We analyzed 116 self-collected saliva samples from passengers and airport staff arriving from abroad. All samples were negative by RT-qPCR, while 1 was positive, using ddPCR. Lastly, we developed ddPCR assays for SARS-CoV-2 variants identification (alpha, beta, gamma, delta/kappa) that are more economically advantageous when compared to NGS. Our findings demonstrated that saliva samples can be stored at ambient temperature, as we did not observe any significant difference between a fresh sample and the same sample after 24 hours (p = 0.23), hence, saliva collection is the optimal route for sampling airplane passengers. Our results also showed that droplet digital PCR is a more suitable method for detecting virus from saliva, compared to RT-qPCR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.