Chios mastic gum, a plant-derived product obtained by the Mediterranean bush Pistacia lentiscus (L.) var. chia (Duham), has generated considerable interest because of its antimicrobial, anticancer, antioxidant and other beneficial properties. Its aqueous extract, called Chios mastic water (CMW), contains the authentic mastic scent and all the water soluble components of mastic. In the present study, the potential genotoxic activity of CMW, as well as its antigenotoxic properties against the mutagenic agent mitomycin-C (MMC), was evaluated by employing the in vitro Cytokinesis Block MicroNucleus (CBMN) assay and the in vivo Somatic Mutation And Recombination Test (SMART). In the former assay, lymphocytes were treated with 1, 2 and 5% (v/v) of CMW with or without MMC at concentrations 0.05 and 0.50 µg/ml. No significant micronucleus induction was observed by CMW, while co-treatment with MMC led to a decrease of the MMC-induced micronuclei, which ranged between 22.8 and 44.7%. For SMART, larvae were treated with 50 and 100% (v/v) CMW with or without MMC at concentrations 1.00, 2.50 and 5.00 µg/ml. It was shown that CMW alone did not modify the spontaneous frequencies of spots indicating lack of genotoxic activity. Τhe simultaneous administration of MMC with 100% CMW led to considerable alterations of the frequencies of MMC-induced wing spots with the total mutant clones showing reduction between 53.5 and 74.4%. Our data clearly show a protective role of CMW against the MMC-induced genotoxicity and further research on the beneficial properties of this product is suggested.
Ceratitis fasciventris is a serious agricultural pest of the Tephritidae family that belongs to the African Ceratitis FAR species complex. Species limits within the FAR complex are obscure and multidisciplinary approaches have attempted to resolve phylogenetic relationships among its members. These studies support the existence of at least three additional species in the complex, C. anonnae, C. rosa and C. quilicii, while they indicate the presence of two structured populations (F1 and F2) within the C. fasciventris species. In the present study we present the mitotic karyotype, polytene chromosome maps, in situ hybridization data and the complete mitochondrial genome sequence of an F2 population of C. fasciventris. This is the first polytene chromosome map and complete mitogenome of a member of the FAR complex and only the second reported for the Ceratitis genus. Both polytene chromosomes and mitochondrial sequence could provide valuable information and be used as reference for comparative analysis among the members of the complex towards the clarification of their phylogenetic relationships.
Background: Elective freezing of all embryos, followed by frozen-thawed ET cycles emerged to prevent risk of Ovarian Hyperstimulation Syndrome and to allow endometrium recovery after Controlled Ovarian Stimulation, leading to better IVF outcomes. Blastocyst Freeze-all policy can minimize the number of abnormal embryos and consequently failed ETs, but its efficacy in terms of cumulative rates has not been studied yet. Methods: A prospective cohort observational study was carried out in Assisting Nature, Center of Assisted Reproduction and Genetics, in Thessaloniki, Greece from January 2014 until December 2017. 244 patients- normal or high responders- underwent COS with recFSH and Freeze-all policy with blastocyst culture. The included patients were 18-39 years and achieved clinical pregnancy and/or live birth or had all their vitrified blastocysts transferred in subsequent frozen-thawed cycles. Women were divided into four groups (group A: 1–2 blastocysts frozen; group B: 3–4; group C: 5–6; group D ≥7 blastocysts frozen) or seven groups (group I: 1–2 blastocysts frozen, group II: 3, group III: 4, group IV: 5, group V: 6, group VI: 7; group VII: ≥8 blastocysts frozen), according to the numerical range or to the absolute number of vitrified blastocysts, respectively. Results: The main outcome of the study was the CLBR achieved by frozen-thawed ETs, according to the number of the vitrified blastocysts. Higher CLBR are expected, when at least 3 blastocysts are formed (group B: 65.2%) and at least 2 frozen-thawed ETs are performed, reaching highest rates (88%) by group D (≥7 vitrified blastocysts). Similarly, CLBR is significantly increasing with the absolute number of the vitrified blastocysts, ranging from 20%, when 1–2 blastocysts are vitrified (group I) to 82.4% when ≥8 blastocysts are available. Conclusions: A higher number of vitrified blastocysts is associated with higher CLBR in women <40 years old- normal/high responders- following Freeze-all policy. Adopting Freeze-all strategy after blastocyst culture can contribute to improve delivery outcome after IVF, in terms of CLBR. The number of the total cryopreserved blastocysts produced might reflect the quality of the oocyte and can successfully predict the pregnancy outcome. The blastulation rate can be a robust criterion to segment or not an IVF cycle.
BackgroundOculocerebrorenal syndrome of Lowe is an X-linked disorder with very low prevalence in the general population. The OCRL gene encodes the protein phosphatidylinositol 4,5-bisphosphate-5-phosphatase, a lipid phosphatase, located in the trans-Golgi network. Point mutations in the OCRL gene cause Lowe syndrome and Dent disease, which are characterized as a multisystemic disorder. The symptoms of Lowe syndrome are expressed primarily as dysfunction of the eyes, kidneys, and the central nervous system.Case presentationThis report describes a case of a 31-year-old Georgian woman with a de novo pathogenic mutation causing oculocerebrorenal syndrome of Lowe, who was a volunteer in an oocyte donation program for in vitro fertilization purposes, and the outcome of the treatments of this particular donor’s oocyte receivers, describing the implications of the mutation for the children born as a result of the treatments. It raises important medical and ethical issues about the necessity of genetic testing of oocyte donors and the possibility of rare genetic disorders being inherited by the offspring of donors.ConclusionThis particular case indicates the legal, medical, and emotional risks of utilizing donor oocytes from phenotypically healthy women, whose genetic constitution is unknown in terms of being silent carriers of rare diseases. In addition, all the necessary actions were followed; the further examinations that are required are mentioned. The donor and the offspring should be further tested. The remaining cryopreserved embryos should be destroyed or preimplantation genetic testing should be performed before they are utilized. Finally, all the people involved, the treated couples and the donor, alongside her family, should follow genetic and psychological counselling.
Oocyte donation programs involve young and healthy women undergoing heavy ovarian stimulation protocols in order to yield good-quality oocytes for their respective recipient couples. These stimulation cycles were for many years beset by a serious and potentially lethal complication known as ovarian hyperstimulation syndrome (OHSS). The use of the short antagonist protocol not only is patient-friendly but also has halved the need for hospitalization due to OHSS sequelae. Moreover, the replacement of beta-human chorionic gonadotropin (b-hCG) with gonadotropin-releasing hormone agonist (GnRH-a) triggering has reduced OHSS occurrence significantly, almost eliminating its moderate to severe presentations. Despite differences in the dosage and type of GnRH-a used across different studies, a comparable number of mature oocytes retrieved, fertilization, blastulation, and pregnancy rates in egg recipients are seen when compared to hCG-triggered cycles. Nowadays, GnRH-a tend to be the triggering agents of choice in oocyte donation cycles, as they are effective and safe and reduce OHSS incidence. However, as GnRH-a triggering does not eliminate OHSS altogether, caution should be practiced in order to avoid unnecessary lengthy and heavy ovarian stimulation that could potentially compromise both the donor’s wellbeing and the treatment’s efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.