Introduction. Candida spp. are commensal fungal pathogens of humans, but when there is an imbalance in the microbiota, or weak host immunity, these yeasts can become pathogenic, generating high medical costs. Gap Statement. With the increase in resistance to conventional antifungals, the development of new therapeutic strategies is necessary. This study evaluated the in vitro antifungal activity of chlorogenic acid against fluconazole-resistant strains of Candida spp. Mechanism of action through flow cytometry and in silico analyses, as well as molecular docking assays with ALS3 and SAP5, important proteins in the pathogenesis of Candida albicans associated with the adhesion process and biofilm formation. Results. The chlorogenic acid showed in vitro antifungal activity against the strains tested, causing reduced cell viability, increased potential for mitochondrial depolarization and production of reactive oxygen species, DNA fragmentation and phosphatidylserine externalization, indicating an apoptotic process. Concerning the analysis through docking, the complexes formed between chlorogenic acid and the targets Thymidylate Kinase, CYP51, 1Yeast Cytochrome BC1 Complex e Exo-B-(1,3)-glucanase demonstrated more favourable binding energy. In addition, chlorogenic acid presented significant interactions with the ALS3 active site residues of C. albicans, important in the adhesion process and resistance to fluconazole. Regarding molecular docking with SAP5, no significant interactions were found between chlorogenic acid and the active site of the enzyme. Conclusion. We concluded that chlorogenic acid has potential use as an adjuvant in antifungal therapies, due to its anti-Candida activity and ability to interact with important drug targets.
Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) is one of the main human pathogens and is responsible for many diseases ranging from skin infections to more invasive infections. These infections are dangerous and expensive to treat because these strains are resistant to a large number of conventional antibiotics. Having said that, Antibacterial effect of ketamine against MRSA strains, its mechanism of action and in silico interaction with sortase A was evaluated. The antibacterial effect of ketamine was assessed by the broth microdilution method. Subsequently, the mechanism of action was assessed using flow cytometry and molecular docking assays with sortase A. Our results showed that Ketamine has a significant antibacterial activity against MRSA strains in the range of 2.49 to 3.73 mM. Their mechanism of action involves alterations in the membrane integrity and DNA damage, reducing cell viability that provoke death by apoptosis. In addition, Ketamine compound had affinity for S. aureus sortase A. These results indicate that this compound can be an alternative to develop new strategies to combat of infections caused by MRSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.