Origin of sharp waves during slow-wave sleepSWRs occured reliably in the DVR during slow-wave sleep, and slowwave sleep alternated regularly with REM sleep (Fig. 1a-c, Extended Data Fig. 1), as reported previously 3 . High-frequency ripples (around 70-150 Hz) rode on each sharp wave and contained action potentials. Local field potentials (LFPs) were highly correlated across DVR recording sites (peak correlation 0.74 over 18 h of slow-wave sleep, mean over two animals), but sharp waves that were recorded in the anterior medial pole of the DVR (amDVR) preceded their counterparts in more posterior or more lateral regions by up to 200 ms depending on the spacing between recording sites (Fig. 1d, e, Extended Data Fig. 1g, h), suggesting SWR propagation.We next recorded from thick anterior transverse, horizontal and parasagittal slices of DVR in artificial cerebrospinal fluid solution (ACSF) (Methods, Extended Data Fig. 2a-f). All configurations produced
Many neurodegenerative disorders such as Alzheimer’s, Parkinson’s and polyglutamine diseases share a common pathogenic mechanism: the abnormal accumulation of disease-causing proteins, due to either the mutant protein’s resistance to degradation or overexpression of the wild-type protein. We developed a strategy to identify therapeutic entry points for such neurodegenerative disorders by screening for genetic networks that influence the levels of disease-driving proteins. We applied this approach, which integrates parallel cell-based and Drosophila genetic screens, to spinocerebellar ataxia type 1 (SCA1), a disease caused by expansion of a polyglutamine tract in ataxin 1 (ATXN1). Our approach revealed that downregulation of several components of the RAS–MAPK–MSK1 pathway decreases ATXN1 levels and suppresses neurodegeneration in Drosophila and mice. Importantly, pharmacologic inhibitors of components of this pathway also decrease ATXN1 levels, suggesting that these components represent new therapeutic targets in mitigating SCA1. Collectively, these data reveal new therapeutic entry points for SCA1 and provide a proof-of-principle for tackling other classes of intractable neurodegenerative diseases.
Huntington's disease is caused by expanded CAG repeats in HTT, conferring toxic gain of function on mutant HTT (mHTT) protein. Reducing mHTT amounts is postulated as a strategy for therapeutic intervention. We conducted genome-wide RNA interference screens for genes modifying mHTT abundance and identified 13 hits. We tested 10 in vivo in a Drosophila melanogaster Huntington's disease model, and 6 exhibited activity consistent with the in vitro screening results. Among these, negative regulator of ubiquitin-like protein 1 (NUB1) overexpression lowered mHTT in neuronal models and rescued mHTT-induced death. NUB1 reduces mHTT amounts by enhancing polyubiquitination and proteasomal degradation of mHTT protein. The process requires CUL3 and the ubiquitin-like protein NEDD8 necessary for CUL3 activation. As a potential approach to modulating NUB1 for treatment, interferon-β lowered mHTT and rescued neuronal toxicity through induction of NUB1. Thus, we have identified genes modifying endogenous mHTT using high-throughput screening and demonstrate NUB1 as an exemplar entry point for therapeutic intervention of Huntington's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.