The seven-transmembrane receptor Smoothened (Smo) is the major component involved in signal transduction of the Hedgehog (Hh) morphogens. Smo inhibitors represent a promising alternative for the treatment of several types of cancers linked to abnormal Hh signaling. Here, on the basis of experimental data, we generated and validated a pharmacophoric model for Smo inhibitors constituted by three hydrogen bond acceptor groups and three hydrophobic regions. We used this model for the virtual screening of a library of commercially available compounds. Visual and structural criteria allowed the selection of 20 top scoring ligands, and an acylthiourea, N-(3-benzamidophenylcarbamothioyl)-3,4,5-trimethoxybenzamide (MRT-10), was identified and characterized as a Smo antagonist. The corresponding acylurea, N-(3-benzamidophenylcarbamoyl)-3,4,5-trimethoxybenzamide (MRT-14), was synthesized and shown to display, in various Hh assays, an inhibitory potency comparable to or greater than that of reference Smo antagonists cyclopamine and. Focused virtual screening of the same library further identified five additional related antagonists. MRT-10 and MRT-14 constitute the first members of novel families of Smo antagonists. The described virtual screening approach is aimed at identifying novel modulators of Smo and of other G-protein coupled receptors.
The Hedgehog (Hh) signaling pathway has numerous roles in the control of cell proliferation, tissue patterning and stem cell maintenance. In spite of intensive study, the mechanisms of Hh signal transduction are not completely understood. Here I review published data and present a novel model of vertebrate Hh signaling suggesting that Smoothened (Smo) functions as a G-protein-coupled receptor in cilia. This is the first model to propose molecular mechanisms for the major steps of Hh signaling, including inhibition of Smo by Patched, Smo activation, and signal transduction from active Smo to Gli transcription factors. It also suggests a novel role for the negative pathway regulators Sufu and PKA in these processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.