Epidermal growth factor is an important mitogen for hepatocytes. Its overexpression promotes hepatocellular carcinogenesis. To identify the network of genes regulated through EGF, we investigated the liver transcriptome during various stages of hepatocarcinogenesis in EGF2B transgenic mice. Targeted overexpression of IgEGF induced distinct hepatocellular lesions and eventually solid tumours at the age of 6-8 months, as evidenced by histopathology. We used the murine MG U74Av2 oligonucleotide microarrays to identify transcript signatures in 12 tumours of small (n ¼ 5, pooled), medium (n ¼ 4) and large sizes (n ¼ 3), and compared the findings with three nontumorous transgenic livers and four control livers. Global gene expression analysis at successive stages of carcinogenesis revealed hallmarks linked to tumour size. A comparison of gene expression profiles of nontumorous transgenic liver versus control liver provided insight into the initial events predisposing liver cells to malignant transformation, and we found overexpression of c-fos, eps-15, TGIF, IGFBP1, Alcam, ets-2 and repression of Gas-1 as distinct events. Further, when gene expression profiles of small manifested tumours were compared with nontumorous transgenic liver, additional changes were obvious and included overexpression of junB, Id-1, minopontin, villin, claudin-7, RR M2, p34cdc2, cyclinD1 and cyclinB1 among others. These genes are therefore strongly associated with tumour formation. Our study provided new information on the tumour stage-dependent network of EGF-regulated genes, and we identified candidate genes linked to tumorigenes and progression of disease.
BackgroundThe Wnt receptor Frizzled-7 (FZD7) promotes tumor progression and can be currently targeted by monoclonal antibody therapy. Here, we determined the prognostic value of FZD7 for the overall survival of glioblastoma (GBM) patients, both as individual marker and taken in combination with the previously-described markers MGMT and IDH1. Additionally, we tested whether these markers (alone or in combination) exhibited sex-specific differences.ResultsHigh levels of FZD7 (FZD7high) associated with shorter survival in GBM patients; however, FZD7high was a significant predictor of poor survival only in male patients. Mutation of IDH1 significantly associated with longer survival in male but not female patients. Methylated MGMT promoter significantly associated with longer survival only in female patients. Combination of FZD7 with MGMT enhanced the prognostic accuracy and abrogated the sex differences observed upon single marker analysis. Combination of FZD7 with IDH1 was a significant predictor of survival in male GBM patients only.Materials and MethodsThree independent cohorts of patients with primary GBM (n=120, n=108 and n=105, respectively) were included in this study. FZD7 and IDH1 were assessed by immunohistochemistry in tissue microarrays. MGMT promoter methylation was determined by methylation-specific polymerase chain reaction. Survival analysis was performed by Kaplan-Meier estimate, log-rank test and Cox proportional hazard regression.ConclusionsOur study identifies novel individual and combination markers with prognostic and, possibly, therapeutic relevance in GBM. Furthermore, our findings substantiate the importance of sexual dimorphism in this type of cancer.
Neonates rely on their innate immune system. Resident tissue macrophages are considered to be initiators and regulators of the innate immune response and thus, appear to be especially important to neonates. We hypothesized that the phenotype and function of neonatal tissue macrophages differ from their adult counterparts. Peritoneal macrophages from neonatal (<24 h) and adult (6 weeks old) C57BL/6J mice were isolated and analyzed by high-content chipcytometry. After stimulation for 6 h with LPS (0, 1, 10, 100 ng/mL), macrophage transcriptome was analyzed by microarray and cytokine release was measured using multiparametric bead assays. Antigen presenting capacity was compared by T-cell stimulation assays. We observed that neonatal murine peritoneal macrophages are characterized by selective lack of expression of F4/80, MHC class II, and costimulatory molecules (CD80, CD86). Furthermore, we found differences in the transcriptome between neonatal and adult macrophages, unstimulated and after LPS stimulation. Although neonatal macrophages showed a significantly increased secretion of proinflammatory cytokines upon LPS stimulation, their potential to induce T-cell proliferation was significantly reduced. In conclusion, we observed a distinct phenotype of the neonatal macrophage population. The specific functions of this macrophage population could help to understand the excessive inflammatory reactions observed in the very young.Keywords: Immune responses r Macrophages r Neonate immunity r Toll-like receptors (TLRs) Additional supporting information may be found in the online version of this article at the publisher's web-site IntroductionNeonates and in particular preterm infants are extremely vulnerable to states of inflammation [1]. They have an increased susceptibility to microbial infections with an enhanced morbidity and Correspondence: Mr. Thomas Winterberg e-mail: Winterberg.thomas@mh-hannover.de mortality [2]. Sepsis, pneumonia, and gastrointestinal disorders such as necrotizing enterocolitis are a common threat to patients in neonatal intensive care. The first days of life represent a period of transition of the immune system: The protection of the fetus by the maternal immune system and the sterile environment are lost and the newborn has to cope with the outside world and its multiple foreign antigens. Although maternal antibodies help the neonate in the first weeks, it has to develop its own adaptive immune capacities during infancy [2]. In the neonatal period, monocytes and [6][7][8][9]. Until now, neonatal monocytes and macrophages have been described as immature or dormant myeloid cells. However, these studies are based on peripheral blood monocytes or CBMs, which further differentiate into macrophages ex vivo. Little is known about tissue macrophages in neonates, due to technical difficulties of their isolation and evaluation, but a recent study demonstrated their unique function during heart tissue regeneration [10].It has been shown that the heterogeneous murine macrophage populations are orig...
Non-coding RNAs play major roles in the translational control of gene expression. In order to identify disease-associated miRNAs in precursor lesions of lung cancer, RNA extracts from lungs of either c-Raf transgenic or wild-type (WT) mice were hybridized to the Agilent and Affymetrix miRNA microarray platforms, respectively. This resulted in the detection of a range of miRNAs varying between 111 and 267, depending on the presence or absence of the transgene, on the gender, and on the platform used. Importantly, when the two platforms were compared, only 11–16% of the 586 overlapping genes were commonly detected. With the Agilent microarray, seven miRNAs were identified as significantly regulated, of which three were selectively up-regulated in male transgenic mice. Much to our surprise, when the same samples were analyzed with the Affymetrix platform, only two miRNAs were identified as significantly regulated. Quantitative PCR performed with lung RNA extracts from WT and transgenic mice confirmed only partially the differential expression of significant regulated miRNAs and established that the Agilent platform failed to detect miR-433. Finally, bioinformatic analyses predicted a total of 152 mouse genes as targets of the regulated miRNAs of which 4 and 11 genes were significantly regulated at the mRNA level, respectively in laser micro-dissected lung dysplasia and lung adenocarcinomas of c-Raf transgenic mice. Furthermore, for many of the predicted mouse target genes expression of the coded protein was also repressed in human lung cancer when the publically available database of the Human Protein Atlas was analyzed, thus supporting the clinical significance of our findings. In conclusion, a significant difference in a cross-platform comparison was observed that will have important implications for research into miRNAs.
The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.