Models to predict the solid-solution partitioning of trace metals are important tools in risk assessment, providing information on the biological availability of metals and their leaching. Empirically based models, or transfer functions, published to date differ with respect to the mathematical model used, the optimization method, the methods used to determine metal concentrations in the solid and solution phases and the soil properties accounted for. Here we review these methodological aspects before deriving our own transfer functions that relate free metal ion activities to reactive metal contents in the solid phase. One single function was able to predict free-metal ion activities estimated by a variety of soil solution extraction methods. Evaluation of the mathematical formulation showed that transfer functions derived to optimize the Freundlich adsorption constant (K f ), in contrast to functions derived to optimize either the solid or solution concentration, were most suitable for predicting concentrations in solution from solid phase concentrations and vice versa. The model was shown to be generally applicable on the basis of a large number of independent data, for which predicted free metal activities were within one order of magnitude of the observations. The model only over-estimated free-metal ion activities at alkaline pH (>7). The use of the reactive metal content measured by 0.43 m HNO 3 rather than the total metal content resulted in a close correlation with measured data, particularly for nickel and zinc.
Near-annual pollen records for the last 100 years were obtained from a 65-cm peat monolith from a raised peat bog in the Central Forest State Natural Biosphere Reserve (southern part of the Valdai Hills, European Russia) and compared with the available long-term meteorological observations. An age–depth model for the peat monolith was constructed by 210Pb and 137Cs dating. Cross-correlation and the Granger causality analysis indicated a broad range of statistically significant correlations between the pollen accumulation rate (PAR) of the main forest-forming trees and shrubs ( Picea, Pinus, Betula, Tilia, Quercus, Ulmus, Alnus, and Corylus) and the air temperature and precipitation during the previous 3 years. Results showed that high air temperatures during the growing season (May–September) in the year prior to the flowering led to an increase in pollen productivity of the main tree species. The statistically significant correlation between the PAR of trees and shrubs and winter precipitation of the current and previous years could reflect the influence of winter precipitation on soil water availability and as a result on tree growth and functioning in the spring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.