A subgroup H of a group G is said to be permutable in G, if HK = KH for every subgroup K of G. A result due to Stonehewer asserts that every permutable subgroup is ascendant although the converse is false. In this paper we study some infinite groups whose ascendant subgroups are permutable (AP -groups). We show that the structure of radical hyperfinite AP -groups behave as that of finite soluble groups in which the relation to be a permutable subgroup is transitive (P T -groups).
It is a natural question if a Cartesian product of objects produces an object of the same type. For example, it is well known that a countable Cartesian product of metrizable topological spaces is metrizable. Related to this question, Borsík and Doboš characterized those functions that allow obtaining a metric in the Cartesian product of metric spaces by means of the aggregation of the metrics of each factor space. This question was also studied for norms by Herburt and Moszyńska. This aggregation procedure can be modified in order to construct a metric or a norm on a certain set by means of a family of metrics or norms, respectively. In this paper, we characterize the functions that allow merging an arbitrary collection of (asymmetric) norms defined over a vector space into a single norm (aggregation on sets). We see that these functions are different from those that allow the construction of a norm in a Cartesian product (aggregation on products). Moreover, we study a related topological problem that was considered in the context of metric spaces by Borsík and Doboš. Concretely, we analyze under which conditions the aggregated norm is compatible with the product topology or the supremum topology in each case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.