Currently, there is an ever-growing interest in carbon materials with increased deformation-strength, thermophysical parameters. Due to their unique physical and chemical properties, such materials have a wide range of applications in various industries. Many prospects for the use of polymer composite materials based on polyvinylidene fluoride (PVDF) for scientific and technical purposes explain the plethora of studies on their characteristics “structure-property”, processing, application and ecology which keep appearing. Building a broader conceptual picture of new generation polymeric materials is feasible with the use of innovative technologies; thus, achieving a high level of multidisciplinarity and integration of polymer science; its fundamental problems are formed, the solution of which determines a significant contribution to the natural-scientific picture of the modern world. This review provides explanation of PVDF advanced properties and potential applications of this polymer material in its various forms. More specifically, this paper will go over PVDF trademarks presently available on the market, provide thorough overview of the current and potential applications. Last but not least, this article will also delve into the processing and chemical properties of PVDF such as radiation carbonization, β-phase formation, etc.
The paper specifies the electrostatic spinning process of specific polymeric materials, such as polyvinylidene fluoride (PVDF), polyamide-6 (PA6, Nylon-6) and their combination PVDF/PA6. By combining nanofibers from two different materials during the spinning process, new structures with different mechanical, chemical, and physical properties can be created. The materials and their combinations were subjected to several measurements: scanning electron microscopy (SEM) to capture topography; contact angle of the liquid wettability on the sample surface to observe hydrophobicity and hydrophilicity; crystallization events were determined by differential scanning calorimetry (DSC); X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier-transform infrared spectroscopy (FT-IR) to describe properties and their changes at the chemical level. Furthermore, for the electrical properties of the sample, the dielectric characteristics and the piezoelectric coefficient were measured. The advantage of the addition of co-polymers was to control the properties of PVDF samples and understand the reasons for the changed functionality. The innovation point of this work is the complex analysis of PVDF modification caused by mixing with nylon PA6. Here we emphasize that the application of nylon during the spin influences the properties and structure (polarization, crystallization) of PVDF.
This study is focused on the characterization and investigation of polyvinylidene fluoride (PVDF) nanofibers from the point of view of macro- and nanometer level. The fibers were produced using electrostatic spinning process in air. Two types of fibers were produced since the collector speed ( 300rpm and 2000rpm) differed as the only one processing parameter. Differences in fiber’s properties were studied by scanning electron microscopy (SEM) with cross-sections observation utilizing focused ion beam (FIB). The phase composition was determined by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy. The crystallinity was determined by differential scanning calorimetry (DSC), and chemical analysis of fiber’s surfaces and bonding states were studied using X-ray photoelectron spectroscopy (XPS). Other methods, such as atomic force microscopy (AFM) and piezoelectric force microscopy (PFM), were employed to describe morphology and piezoelectric response of single fiber, respectively. Moreover, the wetting behavior (hydrophobicity or hydrophilicity) was also studied. It was found that collector speed significantly affects fibers alignment and wettability (directionally ordered fibers produced at 2000rpm almost super-hydrophobic in comparison with disordered fibers spun at 300rpm with hydrophilic behavior) as properties at macrolevel. However, it was confirmed that these differences at the macrolevel are closely connected and originate from nanolevel attributes. The study of single individual fibers revealed some protrusions on the fiber’s surface, and fibers spun at 300rpm had a core-shell design, while fibers spun at 2000rpm were hollow.
This review summarizes the current trends and developments in the field of polyvinylidene fluoride (PVDF) for use mainly as a nanogenerator. The text covers PVDF from the first steps of solution mixing, through production, to material utilization, demonstration of results, and future perspective. Specific solvents and ratios must be selected when choosing and mixing the solution. It is necessary to set exact parameters during the fabrication and define whether the material will be flexible nanofibers or a solid layer. Based on these selections, the subsequent use of PVDF and its piezoelectric properties are determined. The most common degradation phenomena and how PVDF behaves are described in the paper. This review is therefore intended to provide a basic overview not only for those who plan to start producing PVDF as energy nanogenerators, active filters, or sensors but also for those who are already knowledgeable in the production of this material and want to expand their existing expertise and current overview of the subject.
The concept of the Internet of Things is capable of making a giant leap in the economy, including research in the field of computer science, network technologies, microelectronics and sensor technology. Combined with the technological developments of nanotechnology and robotics, IoT can play a central role in the industrial revolution by creating economic relations between machines and connecting the economy of people and machines, solving a number of problems that humanity is facing. All devices controlled via the Internet are elements of the Internet of things. The IoT has allowed various possibilities for all countries to improve life quality and the technological ideas for efficiency, productivity, security, and profit. An integrated security system is a giant step towards the improved economy. The concept of IoT plays a decisive role in the further development of the infocommunication industry. This is confirmed both by the position of the International Telecommunication Union (ITU) and the European Union on this issue, and by the inclusion of the Internet of Things in the list of breakthrough technologies in the United States, China and other countries. Thus, this article will go over the current state of the IoT as well as describe which devices and industries stand to benefit from the advantages it brings. Additionally, statistical data on the actual trends and investments into IoT across the world are also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.