It has been proposed that allergen provocation induces hyperalgesia but the involvement of immunoglobulin E and leukocytes remains poorly understood. Here, we have compared the profile of allergen-evoked thermal hyperalgesic response in both passively and actively sensitized rats, and investigated the role of leukocytes in allergen-evoked nociception. Wistar rats were passively sensitized with an intraplantar injection of immunoglobulin E anti-dinitrophenylated bovine serum albumin monoclonal antibody (0.5 microg/paw), and challenged with dinitrophenylated bovine serum albumin (0.5 microg/paw) 24 h later. Alternatively, the animals were actively sensitized with a mixture of Al(OH)3 and ovalbumin and challenged intraplantarly with ovalbumin (12 microg/paw) 14 days later. We found that the thermal hyperalgesic responses set in very rapidly and with comparable intensity in both passively and actively sensitized rats. However, while in the former group the response was shorter, peaking within 1 h and reducing thereafter, a marked plateau was observed from 1 to 6 h post-challenge in the latter group. Actively sensitized rats also had higher neutrophil influx in the plantar tissue, as attested by both myeloperoxidase activity and histological analysis. Treatment of actively sensitized rats with either fucoidin (10 mg/kg, i.v) or anti-rat neutrophil antiserum (i.p.) reduced neutrophil accumulation and the late hyperalgesic response noted from 3 to 6 h post-challenge. Thus, we conclude that though immunoglobulin E-mediated mechanisms can cause thermal hyperalgesia, components of the cellular immune reaction are crucial in order to amplify and sustain the immediate hyperalgesic response triggered by allergen, in a process dependent on neutrophil recruitment.
It is widely accepted that the classical constant-temperature hotplate test is insensitive to cyclooxygenase inhibitors. In the current study, we developed a variant of the hot-plate test procedure (modified hot-plate (MHP) test) to measure inflammatory nociception in freely moving rats and mice. Following left and right hind paw stimulation with a phlogogen and vehicle, respectively, the animals were placed individually on a hot-plate surface at 51ºC and the withdrawal latency for each paw was determined simultaneously in measurements performed at 15, 60, 180, and 360 min post-challenge. Plantar stimulation of rats (250 and 500 µg/paw) and mice (125-500 µg/paw) with carrageenan led to a rapid hyperalgesic response of the ipsilateral paw that reached a plateau from 15 to 360 min after challenge. Pretreatment with indomethacin (4 mg/kg, ip) inhibited the phenomenon at all the times analyzed. Similarly, plantar stimulation of rats and mice with prostaglandin E 2 (0.5 and 1 µg/ paw) also resulted in rapid hyperalgesia which was first detected 15 min post-challenge. Finally, we observed that the MHP test was more sensitive than the classical Hargreaves' test, being able to detect about 4-and 10-fold lower doses of prostaglandin E 2 and carrageenan, respectively. In conclusion, the MHP test is a simple and sensitive method for detecting peripheral hyperalgesia and analgesia in rats and mice. This test represents a low-cost alternative for the study of inflammatory pain in freely moving animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.