Abstract. We perform a systematic study in the computational complexity of the connected variant of three related transversal problems: Vertex Cover, Feedback Vertex Set, and Odd Cycle Transversal. Just like their original counterparts, these variants are NP-complete for general graphs. A graph G is H-free for some graph H if G contains no induced subgraph isomorphic to H. It is known that Connected Vertex Cover is NP-complete even for H-free graphs if H contains a claw or a cycle. We show that the two other connected variants also remain NP-complete if H contains a cycle or claw. In the remaining case H is a linear forest. We show that Connected Vertex Cover, Connected Feedback Vertex Set, and Connected Odd Cycle Transversal are polynomial-time solvable for sP2-free graphs for every constant s ≥ 1. For proving these results we use known results on the price of connectivity for vertex cover, feedback vertex set, and odd cycle transversal. This is the first application of the price of connectivity that results in polynomial-time algorithms.
We study the class of 1-perfectly orientable graphs, that is, graphs having an orientation in which every out-neighborhood induces a tournament. 1-perfectly orientable graphs form a common generalization of chordal graphs and circular arc graphs. Even though they can be recognized in polynomial time, little is known about their structure. In this paper, we develop several results on 1-perfectly orientable graphs. In particular, we: (i) give a characterization of 1-perfectly orientable graphs in terms of edge clique covers, (ii) identify several graph transformations preserving the class of 1-perfectly orientable graphs, (iii) exhibit an infinite family of minimal forbidden induced minors for the class of 1-perfectly orientable graphs, and (iv) characterize the class of 1-perfectly orientable graphs within the classes of cographs and of cobipartite graphs. The class of 1-perfectly orientable co-bipartite graphs coincides with the class of co-bipartite circular arc graphs.
Citation for published item: r rtingerD F F nd tohnsonD wF nd wil ni § D wF nd ulusm D hF @PHISA 9 he pri e of onne tivity for y le tr nsvers lsF9D in w them ti l found tions of omputer s ien e PHIS X RHth sntern tion l ymposiumD wpg PHISD wil nD st lyD eugust PREPVD PHISD pro eedingsD p rt ssF D ppF QWSERHTF ve ture notes in omputer s ien eF @WPQSAF Further information on publisher's website:Publisher's copyright statement:The nal publication is available at Springer via http://dx.doi.org/10.1007/978-3-662-48054-033Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
Ho proved in [A note on the total domination number, Util. Math. 77 (2008) 97-100] that the total domination number of the Cartesian product of any two graphs without isolated vertices is at least one half of the product of their total domination numbers. We extend a result of Lu and Hou from [Total domination in the Cartesian product of a graph and K 2 or C n , Util. Math. 83 (2010) 313-322] by characterizing the pairs of graphs G and H for which γ t (G H) = 1 2 γ t (G)γ t (H) , whenever γ t (H) = 2. In addition, we present an infinite family of graphs G n with γ t (G n ) = 2n, which asymptotically approximate the equality in γ t (G n G n ) ≥ 1 2 γ t (G n ) 2 .
A graph G is said to be 1-perfectly orientable if it has an orientation such that for every vertex v ∈ V (G), the out-neighborhood of v in D is a clique in G. In 1982, Skrien posed the problem of characterizing the class of 1-perfectly orientable graphs. This graph class forms a common generalization of the classes of chordal and circular arc graphs; however, while polynomially recognizable via a reduction to 2-SAT, no structural characterization of this intriguing class of graphs is known. Based on a reduction of the study of 1-perfectly orientable graphs to the biconnected case, we characterize, both in terms of forbidden induced minors and in terms of composition theorems, the classes of 1-perfectly orientable K 4 -minor-free graphs and of 1-perfectly orientable outerplanar graphs. As part of our approach, we introduce a class of graphs defined similarly as the class of 2-trees and relate the classes of graphs under consideration to two other graph classes closed under induced minors studied in the literature: cyclically orientable graphs and graphs of separability at most 2. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.