Internal solitary waves transform as they propagate shoreward over the continental shelf into the coastal zone, from a combination of the horizontal variability of the oceanic hydrology (density and current stratification) and the variable depth. If this background environment varies sufficiently slowly in comparison with an individual solitary wave, then that wave possesses a soliton-like form with varying amplitude and phase. This stage is studied in detail in the framework of the variable-coefficient extended Korteweg-de Vries equation where the variation of the solitary wave parameters can be described analytically through an asymptotic description as a slowly varying solitary wave. Direct numerical simulation of the variable-coefficient extended Korteweg-de Vries equation is performed for several oceanic shelves (North West shelf of Australia, Malin shelf edge, and Arctic shelf ) to demonstrate the applicability of the asymptotic theory. It is shown that the solitary wave may maintain its soliton-like form for large distances (up to 100 km), and this fact helps to explain why internal solitons are widely observed in the world's oceans. In some cases the background stratification contains critical points (where the coefficients of the nonlinear terms in the extended Korteweg-de Vries equation change sign), or does not vary sufficiently slowly; in such cases the solitary wave deforms into a group of secondary waves. This stage is studied numerically.
Abstract. In coastal seas and straits, the interaction of barotropic tidal currents with the continental shelf, seamounts or sills is often observed to generate largeamplitude, horizontally propagating internal solitary waves. Typically these waves occur in regions of variable bottom topography, with the consequence that they are often modeled by nonlinear evolution equations of the Kortewegde Vries type with variable coefficients. We shall review how these models are used to describe the propagation, deformation and disintegration of internal solitary waves as they propagate over the continental shelf and slope.
Abstract. The propagation of large- amplitude internal waves in the ocean is studied here for the case when the nonlinear effects are of cubic order, leading to the modified Korteweg - de Vries equation. The coefficients of this equation are calculated analytically for several models of the density stratification. It is shown that the coefficient of the cubic nonlinear term may have either sign (previously only cases of a negative cubic nonlinearity were known). Cubic nonlinear effects are more important for the high modes of the internal waves. The nonlinear evolution of long periodic (sine) waves is simulated for a three-layer model of the density stratification. The sign of the cubic nonlinear term influences the character of the solitary wave generation. It is shown that the solitary waves of both polarities can appear for either sign of the cubic nonlinear term; if it is positive the solitary waves have a zero pedestal, and if it is negative the solitary waves are generated on the crest and the trough of the long wave. The case of a localised impulsive initial disturbance is also simulated. Here, if the cubic nonlinear term is negative, there is no solitary wave generation at large times, but if it is positive solitary waves appear as the asymptotic solution of the nonlinear wave evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.