For those languages which use it, capitalization is an important signal for the fundamental NLP tasks of Named Entity Recognition (NER) and Part of Speech (POS) tagging. In fact, it is such a strong signal that model performance on these tasks drops sharply in common lowercased scenarios, such as noisy web text or machine translation outputs. In this work, we perform a systematic analysis of solutions to this problem in English, modifying only the casing of the train or test data using lowercasing and truecasing methods. While prior work and first impressions might suggest training a caseless model, or using a truecaser at test time, we show that the most effective strategy is a concatenation of cased and lowercased training data, producing a single model with high performance on both cased and uncased text. As shown in our experiments, this result holds across tasks and input representations. Finally, we show that our proposed solution gives an 8% F1 improvement in mention detection on noisy out-of-domain Twitter data.
This paper describes the Cognitive Computation (CogComp) Group's submissions to the multilingual named entity recognition shared task at the Balto-Slavic Natural Language Processing (BSNLP) Workshop (Piskorski et al., 2019). The final model submitted is a multisource neural NER system with multilingual BERT embeddings, trained on the concatenation of training data in various Slavic languages (as well as English). The performance of our system on the official testing data suggests that multi-source approaches consistently outperform single-source approaches for this task, even with the noise of mismatching tagsets.
No abstract
In low-resource natural language processing (NLP), the key problems are a lack of target language training data, and a lack of native speakers to create it. Cross-lingual methods have had notable success in addressing these concerns, but in certain common circumstances, such as insufficient pretraining corpora or languages far from the source language, their performance suffers. In this work we propose a complementary approach to building low-resource Named Entity Recognition (NER) models using "non-speaker" (NS) annotations, provided by annotators with no prior experience in the target language. We recruit 30 participants in a carefully controlled annotation experiment with Indonesian, Russian, and Hindi. We show that use of NS annotators produces results that are consistently on par or better than cross-lingual methods built on modern contextual representations, and have the potential to outperform with additional effort. We conclude with observations of common annotation patterns and recommended implementation practices, and motivate how NS annotations can be used in addition to prior methods for improved performance. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.