This article considers the technological aspects of the finite volume element method for the numerical solution of partial differential equations on simplicial grids in two and three dimensions. We derive new classes of integration formulas for the exact integration of generic monomials of barycentric coordinates over different types of fundamental shapes corresponding to a barycentric dual mesh. These integration formulas constitute an essential component for the development of high-order accurate finite volume element schemes. Numerical examples are presented that illustrate the validity of the technology.
This contribution concerns with the construction of a simple and effective technology for the problem of exact integration of interpolation polynomials arising while discretizing partial differential equations by the finite volume element method on simplicial meshes. It is based on the element-wise representation of the local shape functions through barycentric coordinates (barycentric interpolation) and the introducing of classes of integration formulas for the exact integration of generic monomials of barycentric coordinates over the geometrical shapes defined by a barycentric dual mesh. We discuss especially a related problem of the approximation of the diffusion operators with spatially varying diffusion tensors, resulting in asymmetric stiffness matrices. Numerical examples are presented that illustrate the validity of the technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.