Growing resistance is reported to carbamate insecticides in malaria vectors in Cameroon. However, the contribution of acetylcholinesterase (Ace-1) to this resistance remains uncharacterised. Here, we established that the G119S mutation is driving resistance to carbamates in Anopheles gambiae populations from Cameroon. Insecticide bioassay on field-collected mosquitoes from Bankeng, a locality in southern Cameroon, showed high resistance to the carbamates bendiocarb (64.8% ± 3.5% mortality) and propoxur (55.71% ± 2.9%) but a full susceptibility to the organophosphate fenitrothion. The TaqMan genotyping of the G119S mutation in field-collected adults revealed the presence of this resistance allele (39%). A significant correlation was observed between the Ace-1R and carbamate resistance at allelic ((bendiocarb; odds ratio (OR) = 75.9; p < 0.0001) and (propoxur; OR = 1514; p < 0.0001)) and genotypic (homozygote resistant vs. homozygote susceptible (bendiocarb; OR = 120.8; p < 0.0001) and (propoxur; OR = 3277; p < 0.0001)) levels. Furthermore, the presence of the mutation was confirmed by sequencing an Ace-1 portion flanking codon 119. The cloning of this fragment revealed a likely duplication of Ace-1 in Cameroon as mosquitoes exhibited at least three distinct haplotypes. Phylogenetic analyses showed that the predominant Ace-1R allele is identical to that from West Africa suggesting a recent introduction of this allele in Central Africa from the West. The spread of this Ace-1R represents a serious challenge to future implementation of indoor residual spraying (IRS)-based interventions using carbamates or organophosphates in Cameroon.
New insecticides have recently been produced to help control pyrethroid-resistant malaria vectors including the pyrrole, chlorfenapyr. Monitoring the susceptibility of mosquito populations against this new product and potential cross-resistance with current insecticides is vital for better resistance management. In this study, we assessed the resistance status of the major malaria vectors Anopheles gambiae and Anopheles funestus to chlorfenapyr across Africa and explored potential cross-resistance with known pyrethroid resistance markers. Efficacy of chlorfenapyr 100 µg/ml against An. gambiae and An. funestus from five Cameroonian locations, the Democratic Republic of Congo, Ghana, Uganda, and Malawi was assessed using CDC bottle assays. Synergist assays were performed with PBO (4%), DEM (8%) and DEF (0.25%) and several pyrethroid-resistant markers were genotyped in both species to assess potential cross-resistance between pyrethroids and chlorfenapyr. Resistance to chlorfenapyr was detected in An. gambiae populations from DRC (Kinshasa) (mortality rate: 64.3 ± 7.1%) Ghana (Obuasi) (65.9 ± 7.4%), Cameroon (Mangoum; 75.2 ± 7.7% and Nkolondom; 86.1 ± 7.4). In contrast, all An. funestus populations were fully susceptible. A negative association was observed between the L1014F-kdr mutation and chlorfenapyr resistance with a greater frequency of homozygote resistant mosquitoes among the dead mosquitoes after exposure compared to alive (OR 0.5; P = 0.02) whereas no association was found between GSTe2 (I114T in An. gambiae; L119F in An. funestus) and resistance to chlorfenapyr. A significant increase of mortality to chlorfenapyr 10 µg/ml was observed in An. funestus after to PBO, DEM and DEF whereas a trend for a decreased mortality was observed in An. gambiae after PBO pre-exposure. This study reveals a greater risk of chlorfenapyr resistance in An. gambiae populations than in An. funestus. However, the higher susceptibility in kdr-resistant mosquitoes points to higher efficacy of chlorfenapyr against the widespread kdr-based pyrethroid resistance.
Background New insecticides with a novel mode of action such as neonicotinoids have recently been recommended for public health by WHO. Resistance monitoring of such novel insecticides requires a robust protocol to monitor the development of resistance in natural populations. In this study, we comparatively used three different solvents to assess the susceptibility of malaria vectors to neonicotinoids across Africa. Methods Mosquitoes were collected from May to July 2021 from three agricultural settings in Cameroon (Njombe-Penja, Nkolondom, and Mangoum), the Democratic Republic of Congo (Ndjili-Brasserie), Ghana (Obuasi), and Uganda (Mayuge). Using the CDC bottle test, we compared the effect of three different solvents (ethanol, acetone, MERO) on the efficacy of neonicotinoids against Anopheles gambiae s.l. In addition, TaqMan assays were used to genotype key pyrethroid-resistant markers in An. gambiae and odds ratio based on Fisher exact test were used to evaluate potential cross-resistance between pyrethroids and clothianidin. Results Lower mortality was observed when using absolute ethanol or acetone alone as solvent for clothianidin (11.4‒51.9% mortality in Nkolondom, 31.7‒48.2% in Mangoum, 34.6‒56.1% in Mayuge, 39.4‒45.6% in Obuasi, 83.7‒89.3% in Congo and 71.1‒95.9% in Njombe pendja) compared to acetone + MERO for which 100% mortality were observed for all the populations. Similar observations were done for imidacloprid and acetamiprid. Synergist assays (PBO, DEM and DEF) with clothianidin revealed a significant increase of mortality suggesting that metabolic resistance mechanisms are contributing to the reduced susceptibility. A negative association was observed between the L1014F-kdr mutation and clothianidin resistance with a greater frequency of homozygote resistant mosquitoes among the dead than among survivors (OR = 0.5; P = 0.02). However, the I114T-GSTe2 was in contrast significantly associated with a greater ability to survive clothianidin with a higher frequency of homozygote resistant among survivors than other genotypes (OR = 2.10; P = 0.013). Conclusions This study revealed a contrasted susceptibility pattern depending on the solvents with ethanol/acetone resulting to lower mortality, thus possibly overestimating resistance, whereas the MERO consistently showed a greater efficacy of neonicotinoids but it could prevent to detect early resistance development. Therefore, we recommend monitoring the susceptibility using both acetone alone and acetone + MERO (4 µg/ml for clothianidin) to capture the accurate resistance profile of the mosquito populations. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.