Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Oftentimes, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we derive a Bartlett correction to such a test and also to a test obtained from a modified profile likelihood function. Our results generalize those in Zucker et al. (Journal of the Royal Statistical Society B , 2000, 62, 827-838) by allowing the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow for random effects nonlinear covariance matrix structure. We report simulation results which show that the proposed tests display superior finite sample behavior relative to the standard likelihood ratio test. An application is also presented and discussed.
Abstract:This paper investigates improved testing inferences under a general multivariate elliptical regression model. The model is very flexible in terms of the specification of the mean vector and the dispersion matrix, and of the choice of the error distribution. The error terms are allowed to follow a multivariate distribution in the class of the elliptical distributions, which has the multivariate normal and Student-t distributions as special cases. We obtain Skovgaard's adjusted likelihood ratio statistics and Barndorff-Nielsen's adjusted signed likelihood ratio statistics and we conduct a simulation study. The simulations suggest that the proposed tests display superior finite sample behavior as compared to the standard tests. Two applications are presented in order to illustrate the methods.
The problem of reducing the bias of maximum likelihood estimator in a general multivariate elliptical regression model is considered. The model is very flexible and allows the mean vector and the dispersion matrix to have parameters in common. Many frequently used models are special cases of this general formulation, namely: errors-in-variables models, nonlinear mixed-effects models, heteroscedastic nonlinear models, among others. In any of these models, the vector of the errors may have any multivariate elliptical distribution. We obtain the second-order bias of the maximum likelihood estimator, a bias-corrected estimator, and a bias-reduced estimator. Simulation results indicate the effectiveness of the bias correction and bias reduction schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.